左偏树(英语:leftist tree或leftist heap),也可称为左偏堆、左倾堆,是
计算机科学中的一种
树,是一种
优先队列实现方式,属于可并堆,在
信息学中十分常见,在统计问题、最值问题、模拟问题和贪心问题等等类型的题目中,左偏树都有着广泛的应用。
斜堆是比左偏树更为一般的数据结构。
左偏树(英语:leftist tree或leftist heap),也可称为左偏堆、左倾堆,是计算机科学中的一种
树,是一种
优先队列实现方式,属于可并堆,在
信息学中十分常见,在统计问题、最值问题、模拟问题和贪心问题等等类型的题目中,左偏树都有着广泛的应用。
斜堆是比左偏树更为一般的数据结构。
不同于
斜堆合并的平均情况复杂度,左偏堆的合并操作的最坏情况复杂度为O(log n),而完全二叉堆为O(n),所以左偏堆适合基于合并操作的情形。
左偏树是一种可并
堆的实现。左偏树是一棵
二叉树,它的节点除了和二叉树的节点一样具有左右子树
指针(left, right)外,还有两个属性: 键值和距离(英文文献中称为s-value)。键值用于比较节点的大小。距离的定义如下:
当且仅当节点 i 的左子树且右子树为空时,节点被称作外节点(实际上保存在二叉树中的节点都是内节点,外节点是逻辑上存在而无需保存。把一颗二叉树补上全部的外节点,则称为extended binary tree)。节点i的距离是节点 i 到它的后代中的最近的外节点所经过的边数。特别的,如果节点 i 本身是外节点,则它的距离为0;而空节点的距离规定为 -1。