代数是数学的一个分支。传统的代数用有字符 (变量) 的表达式进行算术运算,字符代表未知数或未定数。如果不包括除法 (用整数除除外),则每一个表达式都是一个含有理系数的多项式。
定义
幂零李代数(nilpotent Lie algebra)类似于一般
代数中的幂零代数。
定义1
若L为特征为0的
域k上的有限维
李代数,若对任意X∈L,adX是L的幂零自同态,则L称为幂零李代数。
定义2
若存在
自然数N,使得 LN=0,则L称为幂零李代数。
性质
设L为幂零李代数
L的非零理想K与L的中心的交非零。
设I为含于李代数L的中心的理想,则L为幂零李代数当且仅当
商代数L/I为幂零李代数。
对∀x∈L,x均为ad幂零,即adx为幂零自同态。
恩格尔定理:李代数L中所有元x均为ad幂零,则L为幂零李代数。
若x∈𝖌𝖑(V)为幂零自同态,则adx亦为幂零自同态。
例子
例如,所有n阶对角元素都是零的上三角方阵的全体构成幂零李代数。
阿贝尔李代数为幂零李代数。
代数
数学的一个分支。传统的代数用有字符 (变量) 的表达式进行算术运算,字符代表未知数或未定数。如果不包括除法 (用整数除除外),则每一个表达式都是一个含有理系数的多项式。例如: 1/2 xy+1/4z-3x+2/3. 一个代数方程式 (参见EQUATION)是通过使多项式等于零来表示对变量所加的条件。如果只有一个变量,那么满足这一方程式的将是一定数量的实数或复数——它的根。一个代数数是某一方程式的根。代数数的理论——
伽罗瓦理论是数学中最令人满意的分支之一。建立这个理论的
伽罗瓦(Evariste Galois,1811-32)在21岁时死于决斗中。他证明了不可能有解五次方程的代数公式。用他的方法也证明了用直尺和圆规不能解决某些著名的几何问题(立方加倍,三等分一个角)。多于一个变量的代数方程理论属于代数几何学,抽象代数学处理广义的数学结构,它们与算术运算有类似之处。参见,如: 布尔代数(BOOLEAN ALGEBRA);群 (GRO-UPS);矩阵(MATRICES);四元数(QUA-TERNIONS );向量(VECTORS)。这些结构以公理 (见公理法 AXIOMATICMETHOD) 为特征。特别重要的是结合律和交换律。代数方法使问题的求解简化为符号表达式的操作,已渗入数学的各分支。
设K为一交换体. 把K上的向量空间E叫做K上的代数,或叫K-代数,如果赋以从E×E到E中的双线性映射。换言之,赋以集合E由如下三个给定的法则所定义的代数结构:
——记为加法的合成法则(x,y)↦x+y;
——记为乘法的第二个合成法则(x,y)↦xy;
——记为乘法的从K×E到E中的映射(α,x)↦αx,这是一个作用法则;
这三个法则满足下列条件:
a) 赋以第一个和第三个法则,E则为K上的一个向量空间;
b) 对E的元素的任意三元组(x,y,z),有
x(y+z)=xy+xz(y+z)x=yx+zx;
c)对K的任一元素偶(α,β)及对E的任一元素偶(x,y),有(αx)(βy)=(αβ) (xy).
设A为一非空集合. 赋予从A到K中的全体映射之集ℱ(A,K)以如下三个法则:
则ℱ(A, K)是K上的代数, 自然地被称为从A到K中的映射代数。当A=N时, 代数ℱ(A,K)叫做K的元素序列代数。
无论是在代数还是在分析中,代数结构都是最常见到的结构之一。十九世纪前半叶末,随着哈密顿四元数理论的建立,非交换代数的研究已经开始。在十九世纪下半叶,随着M.S.李的工作,非结合代数出现了。到二十世纪初,由于放弃实数体或复数体作为算子域的限制,代数得到了重大扩展。
与外代数,对称代数,张量代数,
克利福德代数等一起,代数结构在多重线性代数中也建立了起来。
李代数
一类重要的
非结合代数。李代数是挪威数学家S.李在19世纪后期研究连续变换群时引进的一个数学概念,它与李群的研究密切相关。在更早些时候,它曾以含蓄的形式出现在力学中,其先决条件是“无穷小变换”概念,这至少可追溯到微积分的发端时代。可用李代数语言表述的最早事实之一是关于哈密顿方程的积分问题。S.李是从探讨具有r个参数的有限单群的结构开始的,并发现李代数的四种主要类型。法国数学家É.嘉当在1894年的论文中给出变数和参变数在复数域中的全部单李代数的一个完全分类。他和德国数学家基灵都发现,全部单李代数分成4个类型和5个例外代数,É.嘉当还构造出这些例外代数。É.嘉当和德国数学家外尔还用表示论来研究李代数,后者得到一个关键性的结果。“李代数”这个术语是1934年由外尔引进的。随着时间的推移,李代数在数学以及古典力学和量子力学中的地位不断上升。到20世纪80年代,李代数不再仅仅被理解为群论问题线性化的工具,它还是有限群理论及线性代数中许多重要问题的来源。李代数的理论不断得到完善和发展,其理论与方法已渗透到数学和理论物理的许多领域。
记L为域F上的线性空间,若L中除了加法和纯量积,还有第三种代数运算:L×L→L,记为[x,y],x,y∈L,它适合条件:
1.反对称性 [x,x]=0, x∈L.
2.双线性性 [λx+μy,z]=λ[x,z]+μ[y,z],λ,μ∈F,x,y∈L.
3.Jacobi恒等式 [[x,y],z]+[[z,x],y]+[[y,z],x]=0,x,y,z∈L.
则[x,y]称为x和y的换位运算,亦称“方括号运算”。这时L称为域F上李代数,简称李代数。当L的维数有限时,称为有限维李代数;当L的维数无限时,称为无限维李代数。例如,若L为域F上的结合代数,满足结合律的乘法,记为ab,a,b∈L,则运算[a,b]=ab-ba,a,b∈L为换位运算。在此运算下,L为李代数.特别地,若L为由所有n×n矩阵构成的结合代数,则在矩阵运算下定义:
[A,B]=AB-BA
便构成一个n维李代数。
人物简介
S.李是
挪威数学家。生于努尔菲尤尔埃德,卒于克里斯蒂安尼亚(今奥斯陆)。1865年毕业于克里斯蒂安尼亚大学。1869年获奖学金到柏林留学,与C.F.克莱因在一起工作并结为好友。第二年在巴黎又结识了达布和若尔当,受到法国学派的影响。1871年回国在克里斯蒂安大学执教,1872年获博士学位。1886年到莱比锡大学接替C. F.克莱因的职务主持数学讲座,12年后返回挪威。1892年当选为法国科学院院士。1895年成为英国皇家学会会员。他还是许多其他科学机构的成员。S.李的主要贡献在以他的名字命名的李群和李代数方面。1870年,他从求解微分方程入手,依靠微分几何方法和射影几何方法建立起一种变换,将空间直线簇和球面一一对应。不久他发现,这种对应是连续的,能将微分方程的解表示出来并加以分类。由此S.李引入了一般的连续变换群概念,证明了一系列定理来发展他的理论。他把微分方程的自同构群作为工具,对二维群和三维群进行分类。在以后的多年中,S.李和他的助手继续丰富完善连续群论学说,出版了3卷本的专著《变换群论》(1888—1893),后人为纪念他的贡献,将连续群改称“李群”。为研究李群,他还创立了所谓“李代数”——一种由无穷小变换构成的代数结构,并研究了二者之间的对应关系。李代数现已成为现代代数学的重要分支。此外,S.李在代数
不变量理论、微分几何学、
分析基础和函数论等方面也有建树。S.李的工作在20世纪初由法国数学家E.嘉当等加以发展。