废水氧化处理法是废水化学处理法的一种,是利用强氧化剂氧化分解废水中污染物,以净化废水的方法,已成为治理生物难降解有机有毒污染物的重要手段,在印染、化工、农药、造纸、电镀和印制板、制药、医院、矿山、垃圾渗滤液等废水的处理上已获得应用。
应用范围
废水氧化处理法是
废水化学处理法之一种。利用强氧化剂氧化分解废水中污染物,以净化废水的方法。强氧化剂能将废水中的有机物逐步降解成为简单的无机物,也能把溶解于水中的污染物氧化为不溶于水、而易于从水中分离出来的物质。
高级氧化技术(Advanced Oxidation Technology,AOT)是利用
化学反应过程中产生的强氧化基团—
羟基自由基(·OH)及一系列链式反应将有机物氧化分解成小分子直至降解为CO2,H2O 及无机盐的技术。羟基自由基具有极强的氧化能力,可以有效去除水中的难降解有机物以及稳定性较强的有机物。此外,高级氧化技术还可以将大分子有机物分解为小分子生物可利用有机物,有效改善污水的可生化性。高级氧化技术主要包括芬顿氧化(Fenton)、光催化氧化、臭氧催化氧化、
电化学氧化、超声氧化、超临界水氧化等。
氧化剂
常用氧化剂可以分为两类:
①氯类,有气态氯、液态氯、
次氯酸钠、次氯酸钙、
二氧化氯等;
②氧类,有空气中的氧、臭氧、
过氧化氢、
高锰酸钾等。
选择氧化剂时应考虑到:
①对废水中特定的污染物有良好的氧化作用;
②反应后的生成物应是无害的或易于从废水中分离的;
③价格便宜,来源方便;
④在常温下反应速度较快;
⑤反应时不需要大幅度调节pH值等。
氧化处理法几乎可处理一切工业废水,特别适用于处理废水中难以被生物降解的有机物,如绝大部分农药和杀虫剂,酚、氰化物,以及引起色度、臭味的物质等。
氯类氧化剂
氯类氧化处理法简称氯化法,已有100多年应用历史,起初用漂白粉(
次氯酸钙)去臭味,后来用氯消毒。1909年前后,液氯成为商品,用氯处理废水得到了迅速发展。1928~1933年,牛奶加工、罐头食品、肉类加工、毛纺等工业先后开始用氯处理废水,以消除臭味,降低BOD(
生化需氧量)、色度,促进絮凝。1942年开始用氯氧化破坏废水中的氰化物,并发展成为处理电镀工业废水最通用的方法。含酚废水的氯化处理法于1950年开始用于生产。
氯类氧化反应
应用氯化处理法时,液氯或气态氯加入水中,迅速发生水解反应而生成次氯酸(HClO),次氯酸在水中电离为次氯酸根离子(ClO-)。
次氯酸、次氯酸根离子都是较强的氧化剂。分子态次氯酸的氧化性能比离子态次氯酸根离子更强。次氯酸的电离度随pH值的增加而增加,当pH值小于2时,水中的氯以分子态存在;pH值为3~6时,以次氯酸为主;pH值大于7.5时,以次氯酸根离子为主;pH值大于9.5时,全部为次氯酸根离子。因此,在理论上氯化法在pH值为中性偏低的水溶液中最有效。
用各种次氯酸盐作氧化剂都是利用它在水溶液中电离和水解形成的次氯酸离子和次氯酸的氧化性能。氯化法处理含氰废水是废水处理中一个实用的典型例子。由于氰基是以共价键相结合,结合键能高达225千卡/摩尔,所以不易分解,因而常利用强氧化法促使其分解破坏。在实际应用中,一般是采用
碱性氯化法。使用液氯或氯气时其基本离子反应式如下:
局部氧化:
CN-+HOCl─→CNCl+OH- (1)
CNCl+2OH-─→CNO-+Cl-+H2O (2)
完全氧化:
2CNO-+3OCl-+H2O─→2CO2+N2+3Cl-+2OH- (3)
反应(1)在任何pH值的条件下发生,并且几乎是瞬时的。为了使有毒的氯化氰(CNCl)能及时按反应 (2)转变成氰酸盐,需要将废水的pH值调整到10.5以上,在这种条件下反应可在几分钟内完成。虽然在局部氧化阶段形成的氰酸盐的毒性仅为原来氰化物的千分之一,但是,通常还要进一步按反应 (3)将氰酸盐氧化分解为氮和
二氧化碳,若保持废水pH值为7.5~8.0,则完成完全氧化反应约需要10~15分钟。
氯化法也广泛用于处理含酚废水,但由于氯的消耗量很大,并容易形成氯酚,释放出强烈的臭味,所以不是完善的处理方法。在低pH值的条件下,酚不能全部破坏,更易形成
氯酚。为此,氯化前必须用石灰调整pH值,使氯化后的水的pH值为7~10。
氯在许多种工业废水处理中不仅是氧化剂,而且能影响胶体微粒的电荷,促进絮凝作用,提高颗粒沉淀和油类漂浮的效率。羊毛漂洗废水用氯化法处理可以破坏废水中的乳化剂,使悬浮固体和乳化的脂肪酸沉淀。经氯化预处理后,羊毛油脂乳化液被迅速分离,可去除80~90%的BOD,95%的悬浮固体和
油脂。这种方法投氯量大,费用较高,但可回收70%的油脂。
工业废水中如含有大量的氨或蛋白质、氨基酸等有机氮化合物,用氯化法处理会形成氯胺或相应的有机衍生物,使氯的消耗量很大。这样,氯化法就不经济了。
在城市污水处理中,常常用少量的氯对污水进行预氯化。对
污水处理厂的出水进行后氯化。预氯化可防止
沉淀池和其他处理设备腐蚀,促进絮凝和沉淀,抑制采用
活性污泥法处理污水过程中的
丝状菌和
真菌的
繁殖,避免污泥膨胀,并可阻止硫化氢的形成,控制整个处理厂的臭味。此外,还可防止在消化池中形成酸和泡沫,从而有助于
污泥消化。后氯化可以杀菌和减少
BOD。这种处理对工业废水往往也起作用。
二氧化氯(ClO2)是
亚氯酸钠和氯气或盐酸反应的产物。
2NaClO2+Cl2─→2ClO2+2NaCl
5NaClO2+4HCl─→4ClO2+5NaCl+2H2O为使反应完全,盐酸和氯气的用量必须分别超过理论值的2.5倍和1.0~1.5倍。二氧化氯在酸性溶液中氧化能力超过氯气,它与氯气相比,能在较宽的pH值范围内快速反应,对杀灭芽孢最为有效,适宜处理医院污水;废水中如含有酚和含氮化合物,不会形成
氯酚、
氯胺和其他衍生物。
二氧化氯在水中保持残留量的时间比氯短,比臭氧长。它对酚有很强的氧化降解能力,可用于处理含酚废水。
注意事项:
应用
二氧化氯必须注意安全,谨防爆炸事故。它在空气中的含量超过10%,就有
爆炸危险。在配制时,原液浓度不宜过高,切忌使两种较浓的原液直接混和反应。
氧类氧化剂
空气中的氧(O2)是最廉价的氧化剂,但只能氧化易于氧化的污染物,如硫化物。空气氧化法脱硫已得到广泛应用。炼油厂含硫废水中的含硫量在1000~2000毫克/升以下、无回收价值时,利用空气氧化,可使硫化物氧化为无毒的
硫代硫酸盐或硫酸盐。
氧类氧化剂类型:
(H2O2)是一种稳定的、具有强氧化能力的氧化剂。过氧化氢适合于处理多种含有毒和有气味化合物的废水,以及含硫化物、氰化物、苯酚等的废水。过氧化氢又可用来增加溶解氧浓度,从而避免废水中的硫酸盐还原为硫化物。过氧化氢的轻微灭菌性能还可以有选择性地杀灭某些引起活性污泥膨胀的微生物,而对
活性污泥法中正常的生物不产生有害影响。过氧化氢性能稳定,通常可放置数年,浓度不会显著下降。某些国家已将应用这种氧化剂列为处理多种废水的可供选择的方案之一。
(2)臭氧
(O3)是一种强氧化剂,对各种有机基团都有较强的氧化能力。它的氧化反应迅速,常可瞬时完成。但由于O3不稳定,须现制现用,成本较高(见
废水臭氧氧化处理法)。
(KMnO4)也是一种强氧化剂。它在氧化反应的过程中,本身被还原为
二氧化锰(MnO2)或水合氧化锰(MnO(OH)2)沉淀下来。如果废水中含有二价锰也会被氧化成二氧化锰或水合氧化锰沉淀下来。沉淀物构成凝絮,引起胶体物质的沉淀。通过氧化、沉淀以及形成水合氧化锰的离子交换等多种作用,能有效地去除铁、锰和某些有机污染物以及放射性废水中的镭、锶等多种放射性离子。在处理含锰废水时,水合氧化锰又进一步通过离子交换作用使二价锰形成的三氧化二锰,可用高锰酸钾稀溶液再生,将它重新氧化成水合氧化锰。高锰酸钾易于溶解,性能稳定,可以干式或湿式投加,设备简单,装置费用较低,溶解时无气味,不形成有毒气体,对钢铁无腐蚀性,因而在给水中的应用相当广泛,但价格较贵。
氧类氧化剂的条件控制:
生物接触氧化法以其处理效率高,动力消耗少,有机负荷承受能力强,运行管理简便等特点,正广泛应用于各种工业废水的处理工艺中,成为好气性生物处理的主要方法之一。它利用固着在填料(也称载体)上的生物膜吸附废水中的有机物,并加以氧化分解,从而使污水净化。国内采用的填料主要是软性填料或
半软性填料,供气方式一般采用填料下多孔曝气或微孔曝气。
接触氧化法较传统的
活性污泥法管理方便,污泥膨胀现象发生少,耐有机负荷冲击力较强,但是,远行中不等于不要管理。
接触氧化法处理工业废水运行较正常的不多,其原因有二,其一是设计方面的失误,其二是缺乏管理技术。有些单位在运转中无原始记录,无监测手段;有些单位供气量是固定的,流量不调整,营养物质不分折;有些单位挂膜,脱膜情况不检查,冲气堵塞无人管,有些单位开机是“三天打鱼,两天晒网”,总之一句话是不会管理,结果是水质处理效果差甚至无效果,相反地浪费能耗,挫伤积极性。因此,加强接触氧化池的管理是十分重要的。
要使它真正发挥效能,必须抓好以下几项工作:
挂膜必须成功。所谓挂膜就是使载体上形成生物膜。生物膜是由微生物群体组合的粘状物,主要是由垂丝状菌胶团和较多的丝状菌组成。填料挂膜是首要环节,如果挂膜不成功,水处理就无效果。挂膜好,微生物生长繁殖快,新陈代谢良性循环,水处理就会有效果。挂膜前必须选好菌种,一般均采用接种方法,可引进同类型水质处理的菌种。这种方法挂膜周期短,适应性强,成本低。引进的菌种一般可为池容积的1/30(菌种含水率98%),池中再加入池容积的1/4工业废水,然后注满清水或河水,以小风量先闷曝数小时,测其COD,DO,NH3-N,pH,检镜,池中COD保持在300~400mg/L左右,NH3保持在10mg/L左右,营养不足可加入工业葡萄糖(含C量40%),尿素(含N量46.7%),使C:N:P=100:5:1左右,DO保持在3-4mg/L,根据DO的情况随时调整曝气量。但风量不宜过大,以防止挂膜困难。
一般在24小时后,可适当排掉上清液1/5左右加入工业废水,目的是降低成本,同时使微生物逐渐适应水质(每天可换水1~次),然后再闷曝,并根据测试数据补充营养,当填料上生成极薄的生物膜时,取下在显微镜下就可看到透明稀薄的菌胶团和游离细菌,还可观察到少量原生动物为豆形虫,盖纤虫等;随着营养的不断提供,生物膜不断增厚,(一般5天),这时可向池中连续小流量进工业废水,并做好各项数据的测试(每班不得少于两次分析),当生物膜厚度增长到300~400微米时,原生动物的种类和数量急剧增加,并以纤毛类为主,丝状菌也大量出现,这时流量可逐渐增加到设计要求,COD的去除率达到50%左右,进入正常运转时期。
处理技术
废水氧化处理技术主要分为Fenton氧化法、臭氧催化氧化法、
湿式氧化法、超临界水氧化法、光催化氧化法和超声氧化法等几类氧类氧化法等几类。
Fenton氧化法
Fenton氧化法。1894年,法国人H.J.HFenton发现采用Fe2++H2O2体系能氧化多种有机物。为纪念他后人将亚铁盐和过氧化氢的组合称为
Fenton试剂,它能高效氧化去除一般废水处理技术无法去除的难降解有机物。近年来,许多学者倾向于将Fenton氧化法与其他处理方法结合起来处理有机废水,如微电解法、超声波法、
生物处理法等等。
Fenton试剂法处理废水的实质是
二价铁离子(Fe2+)与
过氧化氢之间的链反应催化生成
羟基自由基(·OH),其具有较强的氧化能力,·OH与有机物RH反应生成游离基(R·),(R·)则进一步氧化生成CO2和H2O,从而大大降低废水的COD。另一方面,·OH具有很高的
电负性或
亲电性,它的电子亲和能力达569.3kJ之高,具有很强的加成反应特性,因而
Fenton试剂可无选择性或低选择性的氧化水中的大多数有机污染物,特别适用于生物难降解、生物低降解或一般化学氧化剂难以奏效的有机污染物的氧化处理。
Fenton 反应的优点:
(1) 可氧化破坏多种有毒有害的有机物,适用范围广。
(2) 反应条件温和,不需高温高压。
(3) 设备简单,可单独处理,也可与其他方法联合处理。
Fenton 反应的缺点:
(1) 使用药剂的量多,过量的二价铁会增大处理后废水的 COD 值。
(2) 反应时间长,通常要一到数小时。
(3) 氧化能力还不太强,有些有机物还不能被破坏,需借助紫外光、超声波、臭氧等进行强化。
臭氧催化氧化法
臭氧O3因其氧化能力强在水处理中得到广泛的应用,在污水消毒、除色、除臭、去除COD方面均有很好的效果。单独采用臭氧氧化处理存在着臭氧利用率低、降解效果差等问题。为提高臭氧利用率及其氧化能力,将多种催化手段与臭氧进行有机结合,促进臭氧分解生成具有更强氧化能力的·OH,形成了臭氧联合氧化法。O3在水中生成·OH主要有3种途径:在碱性条件下,在紫外光(O3/UV)作用下以及在金属催化下。具体方法包括O3/催化剂,O3/UV,O3/H2O2,及O3/超声波等技术,这些氧化技术可使臭氧在水处理过程中发挥更大的作用,将水中有机物尽可能地氧化降解。
臭氧催化氧化法的研究与应用还处于起步阶段,相关的工艺和配套设备还不够完善,仍存在一些需要进一步深入研究解决的问题。首先,O3的在水中溶解度较低,如何有效地使O3溶于水,提高O3的利用效率需进一步研究解决;其次,由于O3产生效率较低,能耗大,研究高效低能耗的臭氧发生装置也成为当前要解决的关键问题之一;再次,O3与其它技术的联合使用,需要研制出催化效果好、寿命长、重复利用率高的催化剂。
催化臭氧氧化可分为两类:一是利用溶液中金属(离子)的均相催化臭氧氧化,二是利用固态金属、
金属氧化物或负载在载体上的金属或金属氧化物的
非均相催化臭氧氧化。催化臭氧氧化可克服单独臭氧氧化的缺点,从而变成更有实用价值的新型
高级氧化技术。催化臭氧氧化作用也是利用反应过程中产生的大量高氧化性自由基(
羟基自由基)来氧化分解水中的有机物,从而达到水质净化。羟基自由基非常活泼,与大多数有机物反应时速率常数通常为 106~109L/(mol·s)。故催化臭氧氧化的速率也比臭氧氧化高几个数量级。
湿式氧化法
湿式氧化法(WetAirOxidation,简称WAO)是在高温(125-320℃)、高压(0.5-20MPa)下,利用氧化剂(起初为空气或氧气,现在也使用其它氧化剂,如O3,H2O2等)将废水中的有机物氧化成
二氧化碳和水或小分子有机物,从而达到去除污染物的目的。上世纪70年代在传统湿式氧化法的基础上提出了催化湿式氧化法(Catalytic Wet Air Oxidation,简称CWAO),它在WAO工艺基础上添加了适宜的催化剂,降低了反应温度及压力,提高了有机物的氧化速率,提高了氧化效率,从而降低了操作费用和设备投资。
与常规方法相比,湿式氧化法具有适用范围广,处理效率高,极少有二次污染,氧化速率快,可回收能量及有用物料等特点,因而受到了世界各国科研人员的广泛重视,是一项很有发展前途的水处理方法。
传统WAO已经获得成熟的工业应用,但由于其固有的缺陷,在实际推广应用中仍受到限制。WAO一般要在高温高压的条件下进行,对设备材料要求高(耐高温、高压并耐腐蚀),设备的一次性投资费用大。WAO仅适于小流量高浓度的废水处理,对于低浓度大水量的废水则很不经济。另外,即使在很高的温度下,WAO对废水中某些有机物如
多氯联苯、小分子梭酸等的去除效果也不理想,难以做到完全氧化。CWAO在一定程度上克服了传统WAO的缺点,但还需要在广谱高效催化剂的研制、反应器材料、结构和操作方式的改进方面进行大量的研发工作。
湿式催化氧化的优点:
(1) 应用范围广,几乎可以无选择地有效氧化各类高浓度有机废水,处理效果好,在合适的温度和压力条件下,COD 处理率可达 90%以上。
(2) 对有机污染物的氧化速率快,一般只需 30 ~60 min,二次污染少,能耗较低。
(3) 余热和某些物质可回收利用。
超临界水氧化法
将水的温度和压力升高到
临界点(温度374℃、压力22.1MPa)以上,水的密度、
介电常数、
粘度、
扩散系数等就会发生巨大的变化,水就会处于一种既不同于气态,也不同于液态和固态的流体状态—超临界状态,此状态下的水被称为超临界水。超临界水具有许多特殊的性质,如极强的溶解能力、高度可压缩性,非极性有机物能够完全溶于水中,氧气和空气也能以任意比例溶于水中,而无机组分的溶解度则很小。
超临界水氧化法(SupercriticalWaterOxidation,简称SCWO)就是以
超临界水作为反应介质来氧化分解水中污染物的废水处理方法。超临界水氧化法的反应温度一般为400-600℃,压力为30-50MPa,氧化剂一般用氧气或者
过氧化氢。
与其他氧化处理技术相比,超临界水氧化法具有如下明显的优越性:
(1)应用范围广,几乎对所有
有机污染物均可进行氧化分解。
(2)在超临界水中,氧化剂、有机物和水形成均一相,传质速率快,氧化效率高,反应迅速彻底,水中有机物的去除率可达99.9%以上。
(3)水中有机物浓度达到2%以上时,有机物氧化释放出的反应热可以维持反应所需的热量,反应一旦开始就可以自己维持,无需外界供热。
(4)反应在密闭容器中进行,密封条件极好,有利于有毒、有害物质的氧化处理,不会给环境带来二次污染。
(5)反应器结构简单,使用较小体积的反应器就可以处理较大流量的
有机污染物,有利于工业实际运行。
超临界水氧化的缺点是:
(1)需要高温高压,且需特别的设备,投资大,成本高,要专业人员管理与维护,推广应用较困难。
(2)仍有诸如盐沉淀、腐蚀及基础数据缺乏等问题还没有得到根本的解决。这些问题在一定程度上阻碍了超临界水氧化法的工业化进程。
超临界水氧化法由于其反应速度快,氧化程度彻底而越来越受到人们的关注,如何通过催化剂来降低反应条件或缩短反应停留时间,提高反应转化率,成为该领域的一个研究热点。
光催化氧化法
光化学氧化法包括光激发氧化法(如O3/UV)和
光催化氧化法(如TiO2/UV)。光激发氧化法主要以O3、H2O、O2和空气作为氧化剂,在光辐射作用下产生
羟基自由基HO·。光催化氧化法则是在反应溶液中加入一定量的半导体催化剂,使其在紫外光(UV)的照射下产生HO·,两者都是通过HO·的强氧化作用对
有机污染物进行处理。其中,氧化效果较好的是紫外光催化氧化法,它的作用原理是让有机化合物中的C-C、C-N键吸收紫外光的能量而断裂,使有机物逐渐降解,最后以CO2的形式离开体系。
光催化氧化的优点:
(1)反应条件温和、氧化能力强。
(2)在染料废水、
表面活性剂、农药废水、含油废水、氰化物废水、制药废水、
有机磷化合物、多环芳烃等废水处理中,都能有效地进行光催化反应,使其转化为无机小分子,达到完全无害化的目的。
(3)光催化反应对许多无机物,如CN−、Au(CN)-2、I-、SCN-、Cr2O72-、Hg(CH3)2、Hg2+等的去除也有广阔的应用前景。
(4)可以破坏氰化物,以及电镀常用的各种有机螯合剂和添加剂,而达无害化。
(5)可以除去各种水中的微生物、细菌和霉菌。
(6)不仅可以破坏稀溶液(废水)中的有机物,而且可以破坏浓溶液(槽液)中的有机物。
(7)是一种非常清洁的干处理法,不会引入任何其他物质到体系中。
(8)能彻底破坏有机物而使其转化为CO2排出,处理的深度比其他方法高。
光催化氧化的缺点:
(1)紫外光的吸收范围较窄,光能利用率较低,其效率还会受催化剂性质、紫外线波长和反应器的限制,短波紫外线(波长小于1700Å)比长波的效果好,但短波紫外光较难获得。
(2)光催化需要解决透光度的问题,因为某些废水(如印染废水)中的一些悬浮物和较深的色度都不利于光线的透过,会影响光催化效果。
(3)使用的催化剂多为纳米颗粒(太大时催化效果不好),回收困难,而且光照产生的电子-空穴对易复合而失活。将
光催化氧化技术与其他
高级氧化技术联合使用,可以提高处理效率,增强氧化能力,近年来受到研究者的重视。
超声氧化法
超声化学氧化主要是利用频率在15kHz-1MHz的声波,在微小的区域内瞬问高温高压下产生的氧化剂(如HO·)去除难降解有机物。另外一种是超声波吹脱,主要用于废水中高浓度的难降解有机物的处理。
以一定频率和压强的超声波照射溶液时,在声波负压作用下溶液中产生了空化泡,在随后的声波正压相的作用下空化泡迅速崩溃,整个过程发生在纳秒至微秒的时问内,气泡快速崩溃伴随着气泡内蒸气相的绝热压缩,产生瞬时的高温高压,形成所谓的“热点”,同时产生有强烈冲击力的高速微射流。进入空化泡中的水蒸气在高温高压下发生分裂及链式反应,产生HO·、HOO·、H·等自由基以及H2O2、H2等物质。声化学反应的途径主要包括高温高压热解反应和自由基氧化反应两种。
超声氧化的优点有:
(1)设备易得,操作简单,使用方便。
(2)可把有毒有机物降解为毒性较小甚至无毒的小分子,降解速度快,不会造成二次污染等问题。例如对卤代烃、卤代脂肪烃等,光催化氧化、臭氧氧化、生物处理均难以降解,而超声降解时却可取得很好的效果。
超声氧化的缺点:
(1)超声波的产生需要消耗大量的能量。
(2)超声波技术降解废水大多属于实验室阶段,且由于声
化学反应过程的降解机理、反应动力学及反应器的设计放大等方面的研究开展得很不充分,还难以实现工程化。