张力腿平台,是一种海洋油气开发工程设施与设备,其原理是利用半顺应半刚性的平台产生远大于结构自重的浮力,从而与预张力平衡,以此为生产提供一个相对平稳安全的工作环境,并且其自身的直立浮筒结构也能使其具有良好的运动性能。世界上在建和在役的张力腿平台共有25座,可根据总体结构、采油树位置、功能和应用方式进行区别和分类。
设备介绍
第一代张力腿平台,即传统类型的张力腿平台,应用时间长、分布范围广、平台数量多、设计理论成熟,在张力腿平台发展的历史中占有很重要的地位。
从1984年至今,世界上建成投入生产的传统类型张力腿平台共有11座,尚未发生过倾覆、沉没等重大事故,拥有优良的工作记录,由此坚定了业界对TLP这种新兴海洋平台结构的信心。在其发展的20年时间里,世界各国的研究者和工程技术人员积累了丰富的设计应用经验和技术数据,为以后张力腿平台的发展打下了坚实的基础。
在已建成的11座传统类型的张力腿平台中,Shell石油公司在1994—2001年7年间连续建造的5座张力腿平台具有一定的代表性,分别为Auger、Mars、Ram、Ursa和Brutus。
通过第一代张力腿平台的生产实践,进一步证明了张力腿平台在深海域半刚性半柔性的优良运动性能和经济性,但是同时亦发现传统的张力腿平台结构形式仍存在着一定的不足。
①在水深超过1200m的极深水水域,随着张力筋腱长度的增加,出现了张力腿自重过大的问题,并且由于张力筋腱在深水中的受力情况发生改变,因此影响了平台的定位性能。
②在降低造价、改善受力情况和运动性能的方面,传统类型张力腿平台的本体结构仍需要进一步改进。
③差频载荷是一个缓慢变化的力,它将和同样缓慢变化的张力腿平台平面内的运动发生共振。另外,风的
激振力也在这个差频范围内,必然会加剧这种慢漂运动。
④波浪的高频分量和高频水动力会引起张力腿平台平面外的共振,通常称为Springing和Ringing。张力腿平台结构这两个问题随着水深的增加而加剧,对结构的安全性有很大的影响。
⑤传统的张力腿平台是通过海底基础固定入位的,随着水深的增加,海底基础的设计、施工变得十分复杂。
因此,张力腿平台所具有的经济、安全和良好的动力特性在更深水域中均不能得到充分的发挥,传统类型的张力腿平台结构已经不能很好地适应更深的水域。各国学者对张力腿平台结构形式的不断改进完善非常重视,因此,混合式张力腿平台及悬式张力腿平台等新型的张力腿平台便应运而生
原理及性能
张力腿平台设计最主要的思想是使平台半顺应半
刚性。它通过自身的结构形式,产生远大于结构自重的浮力,浮力除了抵消自重之外,剩余部分就称为剩余浮力,这部分剩余浮力与预张力平衡。预张力作用在张力腿平台的垂直张力腿系统上,使张力腿时刻处于受张拉的绷紧状态。较大的张力腿预张力使平台平面外的运动(横摇、纵摇和垂荡)较小,近似于刚性。张力腿将平台和海底固接在一起,为生产提供一个相对平稳安全的工作环境。另一方面,张力腿平台本体主要是直立浮筒结构,一般浮筒所受波浪力的水平方向分力较垂直方向分力大,因而通过张力腿在平面内的柔性,实现平台平面内的运动(纵荡、横荡和首摇),即为顺应式。这样,较大的环境载荷能够通过
惯性力来平衡,而不需要通过结构内力来平衡。张力腿平台这样的结构形式使得结构具有良好的运动性能。
张力腿平台的张力腿系统在初始位置是直立的,平台的纵荡运动将不引起纵摇,但一般会和平台的垂向运动相耦合,即纵荡引起垂荡。在运动过程中没有一个张力腿松弛,它们始终保持等长度平行状态。如果有任意一个张力腿未校准,则会破坏这种理想的平衡性质。因此在张力腿平台的设计中,张腿
锚固位置容许的偏差量很重要。同时,设想使用非平行的张力腿,这样的张力腿虽然亦可将平台固定于某一空间位置,但不平行的张力腿必然会在空间相交于一点,这一点将是平台横荡引起首摇的旋转中心。
张力腿平台在张力腿系泊系统张力变化和平台本体浮力变化控制下,平台平面内的运动固有频率低于波浪频率,而平面外的运动固有频率高于波浪频率。一座典型的张力腿平台,其垂荡运动的固有周期为2~4s,而纵横荡运动的固有周期为100~200s;横摇、纵摇运动固有周期均低于4s,而首摇的运动固有周期则高于40s。整个结构的频率跨越在海浪的一阶频率谱两端,从而避免了结构和海浪能量集中的频率发生共振,使平台结构受力合理,动力性能良好。迄今为止,张力腿平台有着良好的安全记录,这与结构设计上的成功是密不可分的
分类
目前世界上在建和在役的张力腿平台共有21座,这些张力腿平台的基本工作原理一致,但是结构形式以及应用方式却各不相同,为了清楚地区分它们,以下从三个方面对这21座张力腿平台进行分类,在以后的文章中将从每类中选出数个平台做详尽的介绍。
1、按照总体结构分类
可以分为两个大类,即第一代张力腿平台和第二代张力腿平台;
可以划分为湿树平台和干树平台两大类。
3、按照功能和应用方式分类
可以分为大载荷张力腿平台、迷你型张力腿平台、井口张力腿平台三大类;
按照总体结构
从1984年至今的20年时间里,对张力腿平台结构形式的优化一直是人们关注的热点问题。为了进一步降低张力腿平台的成本,提高其适应性、稳定性和安全性,全世界的研究机构和石油公司不断提出新形式的张力腿平台,并将其投入实际生产领域进行检验,从而形成了多种多样的张力腿平台家族。根据张力腿平台结构形式进化的阶段,大致可将它们分为两个大类,即第一代张力腿平台和第二代张力腿平台。
第一代张力腿平台是最早出现的张力腿平台,也是当今世界上数量最多的张力腿平台,目前在役和在建的平台共12座,占世界张力腿平台总数的一半以上,而且仍在不断发展壮大。第一代张力腿平台的总体结构形式已经在前面介绍过了,在此不再赘述。为了将它与此后发展起来的其他结构形式的张力腿平台相区别,又将其称为传统类型的张力腿平台。
自1984年以来,传统类型的张力腿平台在生产实践中不断发展,其理论研究和工程应用已经趋于成熟。20世纪80年代Hutton和Jolliet平台的生产应用,为传统张力腿平台提供了丰富的数据积累和优良的工作记录。进入90年代以来,传统类型的张力腿平台继续飞速发展,SnorreTLP和HeidrunTLP分别于1992年和1995年相继建成,使北海的张力腿平台数量达到了3座;从1994年到2001年,Shell石油公司又在墨西哥湾连续制造了5座传统类型的张力腿平台,分别是AugerTLP、MarsTLP、Ram僤漀眀攀氀氀吀LP、UrsaTLP和BrutusTLP;1999年,BP也建成了该公司的第一座张力腿平台MalinTLP;2003年,Unocal公司在印度尼西亚的加里曼丹岛以东海域建成了WestSenoTLP,从而首次将张力腿平台引入到亚洲海域。这些张力腿平台保持着张力腿平台工作性能的多项世界纪录,其中,HeidrunTLP的排水量达到290310t,是世界现役的张力腿平台中吨位最大的一座;SnorreTLP日产石油190000桶(1桶=158.9873dm3)、天然气3.2×10^6 m3,保持张力腿平台生产能力的世界纪录;而UrsaTLP的工作水深则突破了千米大关,至2004年仍保持着张力腿平台工作水深的世界纪录。属于第一代张力腿平台的有Hutton、Jolliet、Snorre A、Auger、Heidrun、Mars、Ram、Powell、Ursa、Marlin、Brutus、WestSeno A和WestSeno B。
第二代张力腿平台出现于20世纪90年代初期,它是在第一代张力腿平台的基础上发展起来的。第二代张力腿平台在继承传统类型张力腿平台优良运动性能和良好经济效益的同时,对结构形式进行了优化改进,使张力腿平台更适合于深海环境,并且降低了建造成本。世界海洋工程界发展第二代张力腿平台的积极性很高,各大公司纷纷提出了种类繁多的平台设计方案。总的来说,目前投入生产实践的第二代张力腿平台共分为三大系列,分别是由Atlantia公司设计的SeaStar系列张力腿平台、由MODEC公司设计的MOSES系列张力腿平台以及由ABB公司设计的延伸式张力腿平台(简称ETLP)。关于这些第二代张力腿平台的结构形式和特点,将在以后的章节中详细介绍。属于第二代张力腿平台的有:SeaStar、TLP、MOSES TLP、ETLP、Morpeth、Allegheny、
Typhoon、Matterhorn、Prince、MarcoPolo、KizombaA、KizombaB和Magnolia。
另外,除了以上这些已投入实际生产应用的张力腿平台以外,在过去的20年里,全世界的研究者和工程技术人员还提出了不少很有价值的设计方案,并且围绕这些方案进行了广泛而深入的研究和实验。虽然由于种种原因,这些平台设计方案至今仍未进入生产领域,但是了解它们,对于开拓人们的思路,更好地进行下一步的研究是大有裨益的。所以,后面的文章里有选择性地介绍了两种新型的张力腿平台,以期对读者能起到启迪作用。
采油树位置
按照
采油树安装位置的不同,当今世界上的张力腿平台可以划分为湿树平台和干树平台两大类。
湿树平台(wettreesplatform)的采油树位于海底,平台上安装有独立的全套生产处理设施以支持一定数量的海底油井。海底油井通过柔性输油管和钢制悬链线立管(简称SCR)与平台上生产设施相连,平台上的全部生产活动都要通过这些管线来进行。其优点是采油树位于海底,减少了平台上体的负载,不需要建造体积庞大的平台主体,因而降低了平台的总体造价,由于不安装垂直的张紧式立管,因此不需要考虑平台吃水变化对生产立管的影响,从而简化了平台的设计。湿树平台非常适用于分布面广、出油点分散的油田。它以柔性输油管和SCR组成分布广泛的海底管线系统,再以湿树平台作为管汇中心,便可以控制较广的区域。另外,湿树平台的生产储备能力具有很大的弹性,新增的设备和海底油井容易加装到现有的生产系统中,对油田的远期开发比较方便。已建成的有Hutton、Jolliet 、Snorre A、Auger、Heidrun、Mars、Ram/Powell、Ursa、Marlin、Brutus 、Prince、Kizomba A、Matterhorn、WestSeno A、MarcoPolo、Magnolia、Kizomba B和WestSeno B。
干树平台(drytreesplatform)的采油树则位于平台之上,由垂直生产立管直接连接到位于平台井口甲板的采油树上。张力腿平台优良的运动性能,使其在安装干树系统方面具有很大的优势。因为平台与生产立管之间的相对运动量较小,因此可以采用结构简单、造价低廉的
立管张紧装置。干树平台的生产活动主要通过顶张紧立管来进行。其优点是海底油井和表面干树直接通过生产立管垂直连接,可在平台上体安装钻塔,使张力腿平台自行实现钻井、完井功能,避免了远期油田开发中需要调用其他钻井设施而使平台生产中断的问题。另外,由于采油树位于平台之上,因此维修方便,易于管理,还省去了将海底采油树回接到平台上体的硬件费用。已建成的有Morpeth、Allegheny 和Typhoon。
需要指出的是,世界上现有的张力腿平台大多是所处海域的中心平台,有的张力腿平台除了在平台上体安装有干树系统,能够自行进行探采和控井工作之外,同时还通过柔性
输油管和SCR与附近油田的海底采油系统或其他卫星平台相连,作为其石油处理和输出的中心。在此情况下,这些张力腿平台自身就结合了干树和湿树两种系统。因此,在对各张力腿平台进行分类时所依据的标准是看该平台是否拥有支持干树系统的能力。
功能和应用
目前张力腿平台的功能和应用方式非常灵活,如果以此为标准进行分类,可将世界上21座张力腿平台划分为大载荷张力腿平台、迷你型张力腿平台、井口张力腿平台三大类。
大载荷张力腿平台(largedeckloadTLP)是这三种张力腿平台中历史最悠久的一种类型,它是一种体积巨大、造价昂贵的张力腿平台形式,能够支持一套高生产能力的原油处理设施。目前全世界共有9座大载荷张力腿平台,其中3座位于北海油田,6座位于墨西哥湾。因为张力腿的预张力很好地限制8了平台的垂荡运动,因此控井设施可以安装在这种平台的上体,以便于设备的维护和修理工作。在历史上,这种生产系统之所以得到业界的青睐,主要原因就在于它能够安装干树采油系统。但是,由于其高昂的造价和对极深水环境的不适应性,人们现在已经逐渐失去了对建造大载荷张力腿平台的兴趣。当工作水深超过1200m 时,张力筋腱自重过大是大载荷张力腿平台最主要的问题。属于大载荷张力腿平台的是:Hutton、Snorre A、Auger 、Heidrun、Mars、Ram/Powell、Ursa、Marlin和Brutus。
迷你型张力腿平台(Mini-TLP)并不是一种简单缩小化的传统类型张力腿平台,它通过对平台上体、立柱以及张力腿系统进行结构上的改进,从而达到优化各项参数,以更小吨位获得更大有效载荷的目标。迷你型张力腿平台相对于同等规模的传统类型张力腿平台,具有体积小、造价低、灵活性好、受环境载荷小等优点,非常适合于开发中小油田。而且与大载荷张力腿平台不同,迷你型张力腿平台能够在极深水环境中稳定地工作,这也是它之所以能够逐渐取代大载荷张力腿平台,占据当今张力腿平台建造主流的最重要的原因。属于迷你型张力腿平台的有:Morpeth、Allegheny、Typhoon、Prince、Matterhorn、Marco Polo和Magnolia
井口张力腿平台(Tension Leg Wellhead Platform,简称TLWP)是一种经济型的张力腿平台。与前两种张力腿平台不同,井口张力腿不能独立进行生产工作,在它的平台上体只安装有控井设施,而其他的石油生产和处理设施都安装在一艘位于平台附近的辅助生产设施上,如FPSO(
浮式生产储油装置)等。TLP和FPSO之间通过管线相接,共同形成一套完整的海上油田开发系统。这种组合充分发挥了张力腿平台本体与生产立管系统之间相对运动量小、运动性能优良的优点,加之FPSO运动灵活、装载量大、造价相对较低的长处,因此由张力腿平台承担钻探和井口操作的各项功能,而原油处理、储藏和运输等工作由FPSO完成。这一系统经过实践检验,已被证明是一种有效且经济的海上油气开发方式,十分适合在没有或是缺少海底管线系统和永久性基地,且需要进行钻探、完井和油井维护工作的油田区域使用。属于井口张力腿平台的有:Jolliet、Kizomba A、West Seno A、Kizomba B和West Seno B。