微RNA
真核生物中的RNA分子
微RNA(microRNAs;miRNA,又译小分子RNA)是真核生物中广泛存在的一种长约21到23个核苷酸RNA分子,可调节其他基因的表达。miRNA来自一些从DNA转录而来,但无法进一步转译蛋白质的RNA(属于非编码RNA)。miRNA通过与靶信使核糖核酸(mRNA)特异结合,从而抑制转录基因表达, 在调控基因表达、细胞周期、生物体发育时序等方面起重要作用。在动物中,一个微RNA通常可以调控数十个基因。
简介
MicroRNA(miRNA)是一类内生的、长度约20-24个核苷酸的小RNA,其在细胞内具有多种重要的调节作用。每个miRNA可以有多个靶基因,而几个miRNAs也可以调节同一个基因。这种复杂的调节网络既可以通过一个miRNA来调控多个基因的表达,也可以通过几个miRNAs的组合来精细调控某个基因的表达。据推测,miRNA调节着人类三分之一的基因。
MicroRNA存在多种形式,最原始的是pri-miRNA,长度大约为300~1000个碱基;pri-miRNA经过一次加工后,成为pre-miRNA即microRNA前体,长度大约为70~90个碱基;pre-miRNA再经过Dicer酶酶切后,成为长约20~24nt的成熟miRNA。
实际研究中,pre-miRNA应用最早,也最广泛,很多商业化的MicroRNA库都是pre-miRNA形式的。近几年来,研究发现microRNA的双臂对成熟miRNA的形成有着十分重要的作用,所以天然的pri-miRNA形式越来越多地被研究者采用。
miRNA的二级结构为A型双螺旋。
1989年,Victor发现线虫 ( C. elegans) 中有个基因 lin-4 抑制另一个基因 lin-14. 他们认为 lin-4 应该也表达一种调控蛋白质发卡结构
与小分子siRNAs相比,miRNA在分子特性等方面是相似的,但也存在不少的差异。siRNA是双链RNA,3‘端有2个非配对碱基,通常为UU; miRNA是单链RNA。 siRNAs是由dsDNA在Dicer酶切割下产生,而成熟miRNAs的产生要复杂一些,首先pri-miRNA在核内由一种称为Drosha酶处理后成为大约70nt的带有茎环结构的Precursor miRNAs (pre-miRNAs), 这些pre-miRNAs再在Exportin-5帮助下转运到细胞核外之后再由胞质Dicer酶进行处理,酶切后成为成熟的miRNAs。
生命的一些重要活动如幼虫的生长发育、细胞的发生和分化、神经系统的分化等都被一些非编码蛋白的小RNA的调控, 而除miRNA、siRNA以外的小RNA我们知之甚少。
微RNA的作用
人类基因组计划结束后,人们发现编码蛋白质的基因只占总基因组的约2%。而占人类基因组95%的非编码序列竟是产生大量非编码RNA的源泉,这些非编码RNA主要充当调控者的角色,在细胞分化凋亡、生物发育、疾病发生等方面均起重要作用。
其实,RNADNA更为古老,它组成了地球上最早的生命。生命起源初期,没有由核酸编码的蛋白,生命体由RNA组成,这被称为“RNA世界”。RNA既携带遗传信息,又承担催化分子的作用,参与自身复制。虽然后来出现了DNA,但RNA依旧承担着很多调控功能。
在线虫中发现的一种微小RNA(miRNA)——let-7 RNA,就是RNA调控生物发育的一个突出代表。它在线虫幼虫的3/4期出现,它一出现便会抑制Lin-41等蛋白的表达,同时解除对Lin-29蛋白表达的抑制,使线虫进入成虫期。一旦它的一个碱基发生突变,就可使线虫永远停留在幼虫期,而无法成熟。
另一个代表是费厄和麦洛发现的双链RNA能引发RNA干扰——他们两人因此获得2006年诺贝尔医学奖。小分子调控RNA已成为分子生物学中的热点和前沿。因为,小干扰RNA在细胞质中调控蛋白质的生物合成,在细胞核内引发DNA的甲基化,进而引发表观遗传学的一系列变化,可谓“重权在握”。
除此以外,一些微RNA还可以激活心肌细胞的再生能力。在我们出生后不久,心脏就丧失了再生能力。所以,当心脏病发作时,心肌细胞死亡,受损心肌并未长出新生的心肌细胞,而是被瘢痕组织替代。如今,意大利德里亚斯特国际遗传工程和生物技术中心的莫罗·贾克(Mauro Giacca)及其同事们,已经鉴定出了能够激活成年人心肌细胞分裂增殖的分子。之后,他们将在真正的生命体上利用这些分子,诱导心肌细胞分裂增殖。此项工作燃起了我们让受损心脏重获新生的希望。
为了弄清楚哪些微RNA参与心肌细胞的分裂,贾克的团队在人工培养的啮齿动物心肌细胞中测试了875个人类微RNA。他们发现有204个微RNA可以再度激活细胞增殖,其中两个能够影响近2000个基因。贾克认为,只要微RNA不会引起其他细胞的增殖,比如造成肿瘤之类的,对心脏病突发人群来说,这一方法将会成为一项很有价值的介入治疗法。
但RNA调控功能不仅限于小分子RNA,大型RNA调控本领也不示弱。女性细胞中有一种长达一万核苷酸的XistRNA,最终能使女性一条染色体被关闭,使男女性X染色体编码基因的表达量相同。
调控RNA拥有庞大的家族,至今已知的就有小阅读框RNA、印记RNA、微卫星RNA、反向转录RNA、反转座子RNA等等,还有更多种类有待科学家发现。
自2005年以来,我国已有五个与RNA有关的国家重大项目。我国科学家在肿瘤、心血管病等领域,也已取得一些好的成绩。世界各国已有多种核酸技术进入生物产业,过百种的各类核酸药物进入临床试验。
从生物学机理上来说,miRNA有成为肿瘤标志物的优势,它是肿瘤细胞主动分泌的,随着肿瘤细胞的生成、凋零,miRNA的表达量一直在变化,所以每种miRNA的表达量代表了在某一刻人类体内健康或者疾病的信息。MiRXES在人体这2000多种miRNA中,他们找出了与胃癌高度相关的12种miRNA,当人体中出现胃癌细胞时,这12种miRNA在血液中的浓度会出现异常。
参考资料
最新修订时间:2024-10-10 08:24
目录
概述
简介
参考资料