无量纲化处理
综合评价步骤中的一个环节
无量纲化处理,物理学术语,指的是综合评价步骤其中的一个环节。
释义
无量纲化处理
量纲物理量都可以进行将一个物理导出量用若干个基本量乘方之积表示出来的表达式,称为该物理量的量纲式,简称量纲。 它是在选定了单位制之后,由基本物理量单位表达的式子。 有量纲的物理量都可以进行无量纲化处理 在模型编制中,用无量纲化是为了什么?怎么进行无量纲化啊? 无量纲化出现在流体力学发展的早期,当时的数学方法数值计算水平都很有限,为了对一些流体现象做出理论分析(如机翼和船体附近边界层的流动现象),需要将粘性流体控制方程加以简化,于是对目标流体赋予一个特征长度特征速度。利用特征长度和特征速度(通常相对于边界层是一个较大的数)使得某些变量(如X,Y,V变成X/L≤1或Y/L≤1或V/U≤1)这样就可以减少控制方程的变量数目。 对于边界层外的流动则采用不考虑粘性势流模型求解,无须简化。 所以说无量纲化在整个流体力学,尤其是空气动力学的发展历史中占有极为重要的地位。
分类
经济管理学中,无量纲化方法是综合评价步骤中的一个环节。
根据指标实际值和无量纲化结果数值的关系特征可以分为三大类:
一、直线型无量纲化方法:又包括阈值法、指数法标准化方法、比重法
二、折线型无量纲化方法:凸折线型法、凹折线型法、三折线型法
三、曲线型无量纲化方法
常见的无量纲化处理方法主要有极值化、标准化、均值化以及标准差化方法,而最常使用的是标准化方法。但标准化方法处理后的各指标均值都为0,标准差都为1,它只反映了各指标之间的相互影响,在无量纲化的同时也抹杀了各指标之间变异程度上的差异,因此,标准化方法并不适用于多指标的综合评价中。而经过均值化方法处理的各指标数据构成的协方差矩阵既可以反映原始数据中各指标变异程度上的差异,也包含各指标相互影响程度差异的信息。
参考资料
最新修订时间:2024-01-07 22:35
目录
概述
释义
参考资料