有机发光二极体
有机发光二极体
有机发光二极管(英文:Organic Light-Emitting Diode,缩写:OLED)又称有机电激发光显示(英文:Organic Electroluminescence Display,缩写:OELD)、有机发光半导体,OLED技术最早于1950年代和1960年代由法国人和美国人研究,其后由美国柯达公司及英国剑桥大学加以演进。索尼三星LG等公司于21世纪开始量产,与薄膜晶体管液晶显示器为不同类型的产品,前者具有自发光性、广视角、高对比、低耗电、高反应速率、全彩化及制程简单等优点,但相对的在大面板价格、技术选择性 、寿命、分辨率、色彩还原方面便无法与后者匹敌,有机发光二极管显示器可分单色、多彩及全彩等种类,而其中以全彩制作技术最为困难,有机发光二极管显示器依驱动方式的不同又可分为被动式(Passive Matrix,PMOLED)与主动式(Active Matrix,AMOLED)。
简介
有机发光二极管(英文:Organic Light-Emitting Diode,缩写:OLED)又称有机电激发光显示(英文:Organic Electroluminescence Display,缩写:OELD)、有机发光半导体,OLED技术最早于1950年代和1960年代由法国人和美国人研究,其后由美国柯达公司及英国剑桥大学加以演进。索尼三星LG等公司于21世纪开始量产,与薄膜晶体管液晶显示器为不同类型的产品,前者具有自发光性、广视角、高对比、低耗电、高反应速率、全彩化及制程简单等优点,但相对的在大面板价格、技术选择性 、寿命、分辨率、色彩还原方面便无法与后者匹敌,有机发光二极管显示器可分单色、多彩及全彩等种类,而其中以全彩制作技术最为困难,有机发光二极管显示器依驱动方式的不同又可分为被动式(Passive Matrix,PMOLED)与主动式(Active Matrix,AMOLED)。
有机发光二极管可简单分为有机发光二极管和聚合物发光二极管(polymer light-emitting diodes, PLED)两种类型,目前均已开发出成熟产品。聚合物发光二极管相对于有机发光二极管的主要优势是其柔性大面积显示。但由于产品寿命问题,目前市面上的产品仍以有机发光二极管为主要应用。
历史
最早的OLED技术研发开始于1950年代的法国南茜大学,法国物化学家安德烈·贝纳诺斯获誉为“OLED之父”,最早的实用性OLED于1987由柯达公司的邓青云和史蒂夫·范·斯莱克两人发现。
实用性的有机发光二极管技术研究的其中一名研究员是邓青云博士,他出生于香港,于英属哥伦比亚大学得到化学理学士学位,于1975年在康奈尔大学获得物理化学博士学位,另一位则是来自罗彻斯特理工学院的美国人史蒂夫・范・斯莱克,于1979年加入柯达公司。邓青云自1975年开始加入柯达公司Rochester实验室从事有机发光二极管的研究工作,在意外中发现有机发光二极管。1979年的一天晚上,他在回家的路上忽然想起有东西忘记在实验室,回到实验室后,他发现在黑暗中的一块做实验用的有机蓄电池在闪闪发光从而开始了对有机发光二极管的研究。1987年,邓青云和同事史蒂夫・范・斯莱克成功地使用类似半导体PN结的双层有机结构第一次作出了低电压、高效率的光发射器。为柯达公司生产有机发光二极管显示器奠定了基础。OLED英文名为Organic Light-Emitting Diode,缩写:OLED),中文名(有机发光二极管)更是邓青云命名的。
到了1990年,英国剑桥大学物理系的卡文迪许实验室也成功研制出高分子有机发光原件,并解决了OLED稳定性及寿命过短的问题。1992年剑桥大学成立的显示技术公司CDT(Cambridge Display Technology),这项发现使得有机发光二极管的研究走向了一条与柯达完全不同的研发之路。OLED最大的优势是无需背光源,可以自发光可做得很薄,可视角度更大、色彩更富、节能显著、可柔性弯曲等等。可广泛利用在各个领域,目前OLED更多使用AMOLED技术,在2013年的柏林国际电子消费品展(IFA)上,更有曲面OLED电视机种出现并引起注意。
结构
有机发光二极管基本结构是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极,包成如三明治的结构。整个结构层中包括了:电洞传输层(HTL)、发光层(EL)与电子传输层(ETL)。当电力供应至适当电压时,正极电洞与阴极电子便会在发光层中结合,产生光子,依其材料特性不同,产生红、绿和蓝三原色,构成基本色彩。OLED的特性是自发光,不像薄膜晶体管液晶显示器需要背光,因此可视度和亮度均高,且无视角问题,其次是驱动电压低且省电效率高,加上反应快、重量轻、厚度薄,构造简单,成本低等,被视为 21世纪最具前途的产品之一。
特色与关键技术
过去的市场上有机发光半导体一直没办法普及,主要的问题在于早先技术发展的有机发光半导体样品大多是单色居多,即使采用多色的设计,其发色材料和生产技术往往还是限制了有机发光半导体发色的多样性。实际上有机发光半导体的视频产生方法和CRT显示一样,皆是借由三色RGB像素拼成一个彩色像素;因为有机发光半导体的材料对电流接近线性反应,所以能够在不同的驱动电流下显示不同的色彩与灰阶。
OLED的特色在于其核心可以做得很薄,厚度为目前液晶的1/3,加上有机发光半导体为全固态组件,抗震性好,能适应恶劣环境。有机发光半导体主要是自体发光的,让其几乎没有视角问题;与LCD技术相比,即使在大的角度观看,显示画面依然清晰可见。有机发光半导体的组件为自发光且是依靠电压来调整,反应速度要比液芯片件来得快许多,比较适合当作高清电视使用。2007年底SONY推出的11吋O有机发光半导体电视XEL-1,反应速度就比LCD快了1000倍。
有机发光半导体的另一项特性是对低温的适应能力,旧有的液晶技术在零下75度时,即会破裂故障,有机发光半导体只要电路未受损仍能正常显示。此外,有机发光半导体的效率高,耗能较液晶略低还可以在不同材质的基板上制造,甚至能成制作成可弯曲的显示器,应用范围日渐增广。
有机发光半导体与LCD比较之下较占优势,数年前OLED的使用寿命仍然难以达到消费性产品(如PDA、移动电话及数字相机等)应用的要求,但近年来已有大幅的突破,许多移动电话的显示屏已采用OLED,然而在价格上已经和LCD达到黄金交叉点,成本已经略低于LCD
材料技术
小分子
小分子的高效有机发光二极管首先被在伊士曼柯达公司邓青云博士等人的开发。虽然该术语的SM-OLED中也使用,术语OLED传统特指这种类型的器件。
聚合物发光二极管
高分子发光二极管(PLED),也是发光聚合物(LEP),包含当连接到外部电压而发光的电致发光导电聚合物。它们被用作全光谱彩色显示器里面的薄膜。聚合物OLED是相当有效率的,并且对于光产生的量只需要一个相对较小的的功率。
磷光材料
PHOLED,全名Phosphorescent organic light-emitting diode, 是指磷光有机电激发光二极管。OLED的发光模式之一,近年来随着PHOLED的蓬勃发展,目前许多学术研究单位积极研发的对象。
PHOLED 具有高亮度及高效率,有较长的生命期,内部量子效率接近100%, 大量降低显示器的功耗。与磷光材质相比,掺杂萤光材质的面板电光转化效率只有25%,因此磷光材质在平面显示器应用上极具潜力。
潜在应用
有机发光半导体技术的主要优点是主动发光。现在,发红、绿、蓝光的有机发光半导体都可以得到。在过去的几年中,研究者们一直致力于开发有机发光半导体在从背光源、低容量显示器到高容量显示器领域的应用。下面,将对OLED的潜在应用进行讨论,并将其与其它显示技术进行对比。
有机发光半导体在1999年首度商业化,技术仍然非常新。现在用在一些黑白/简单色彩的汽车收音机、移动电话、掌上型电动游乐器等。都属于高端机种。
目前全世界约有100多家厂商从事OLED的商业开发,有机发光半导体目前的技术发展方向分成两大类:日、韩和台湾倾向柯达公司的低分子有机发光半导体技术,欧洲厂商则以PLED为主。两大集团中除了柯达联盟之外,另一个以高分子聚合物为主的飞利浦公司现在也联合了EPSON、DuPont、东芝等公司全力开发自己的产品。2007年第二季全球有机发光半导体市场的产值已达到1亿2340万美元。
OLED面板的生产厂商主要集中于日本、韩国、中国大陆,台湾等地区。
参看
参考资料
最新修订时间:2023-11-16 10:07
目录
概述
简介
参考资料