浓差极化是指分离过程中,料液中的溶液在压力驱动下透过膜,溶质(离子或不同分子量溶质)被截留,在膜与本体溶液界面或临近膜界面区域浓度越来越高;在浓度梯度作用下,溶质又会由膜面向本体溶液扩散,形成边界层,使流体阻力与局部渗透压增加,从而导致溶剂透过通量下降。
浓差极化是指分离过程中,料液中的溶液在压力驱动下透过膜,溶质(离子或不同分子量溶质)被截留,在膜与本体溶液界面或临近膜界面区域浓度越来越高;在浓度梯度作用下,溶质又会由膜面向本体溶液扩散,形成边界层,使流体阻力与局部渗透压增加,从而导致溶剂透过通量下降。
① 膜分离过程中的一种现象,会降低透水率,是一个可逆过程。是指在
超滤过程中,由于水透过膜而使膜表面的
溶质浓度增加,在
浓度梯度作用下,溶质与水以相反方向向本体溶液扩散,在达到
平衡状态时,膜表面形成一溶质浓度分布
边界层,它对水的透过起着
阻碍作用。
② 电流通过电池或
电解池时,如整个
电极过程为
电解质的扩散和对流等过程所控制,则在两极附近的电解质浓度与溶液本体就有差异,使
阳极和
阴极的
电极电位与
平衡电极电位发生偏离,这种现象称为“浓差极化”。
增加难溶盐的浓度,超过其
溶度积并结垢。浓差极化因子(β)被定义为膜表面盐浓度(Cs)与本体溶液盐浓度(Cb)的比值:
那么哪些参数会影响浓差极化因子(β)呢?通常产水通量的增加会增加边界层的盐浓度,从而增加Cs;而给水流量的增加会增大膜表面流速,削减边界层的厚度。因此 β 值与产水流量(Qp)成正比,与平均进水流量(Qfavg)
成反比:式中:Kp —— 比例常数,其值取决于
反渗透系统的构成方式。平均进水流量采用进水量和浓缩液流量的算术平均值,β 值可以进一步表达为膜元件透过液回收率的函数:美国海德能公司推荐的一级反渗透系统浓差极化因子极限值为1.20,对于一支40英寸长的
膜元件来说,大约相当于18 %的回收率。对于
双级反渗透系统的第二级,由于其进水含盐量已经显著降低,因此其 β 值可以适当放宽到1.40,在某些情况下可以容忍到1.70。
电解过程中溶液在电解槽内出现的这种浓度差异,是由于液相传质即,通过界面层溶液的扩散速度跟不上电解速度引起的。结果,当电极反应在一定电流密度下达到稳定后,阴极界面层溶液的浓度必低于本体溶液;而在阳极,例如可溶阳极,界面层溶液的浓度必高于本体溶液。根据能斯特(w.Nernst)电位方程,这两种情况都要导致电极电位偏离按本体溶液浓度计的平衡电位:阴极电势变小(向负方向移动),阳极电势变大(向正方向移动),即发生了电极的浓差极化。
式中i极限为正离子一到达阴极表面便被立即还原,致使界面层溶液中该离子浓度趋于零的电流密度,称
极限电流密度。极限电流密度由实验确定,它相当于阴极极化曲线出现水平段时的电流密度。极限电流密度越大,容许的电流密度上限越大,对电解和电镀越有利。提高
电解质溶液的浓度、搅拌和加热溶液,都能提高极限电流密度。
浓差极化对金属电解、电镀没有任何好处,它使槽电压升高,电耗增大,并使阴极沉积或镀层质量恶化,甚至造成氢的析出和杂质金属离子的放电。浓差极化可以通过搅拌、加热溶液或移动电极而消除至一定限度,但由于电极表面扩散层的存在而不能完全避免。