火焰原子吸收光谱仪
用于原子吸收光谱的仪器
原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原子由基态跃迁激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。
仪器组成
原子吸收光谱仪是由光源、原子化系统、分光系统和检测系统组成。
A 光源
作为光源要求发射的待测元素的锐线光谱有足够的强度、背景小、稳定性
B 原子化器(atomizer
可分为预混合型火焰原子化器(premixed flame atomizer),石墨炉原子化器(graphite furnace atomizer),石英炉原子化器(quartz furnace atomizer),阴极溅射原子化器(cathode sputtering atomizer)。
a 火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成
特点:操作简便、重现性好
b 石墨炉原子化器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。
原子化程序分为干燥、灰化、原子化、高温净化
原子化效率高:在可调的高温下试样利用率达100%
灵敏度高:其检测限达10-6~10-14
试样用量少:适合难熔元素的测定
c.石英炉原子化系统是将气态分析物引入石英炉内在较低温度下实现原子化的一种方法,又称低温原子化法。它主要是与蒸气发生法配合使用(氢化物发生,汞蒸气发生和挥发性化合物发生)。
d.阴极溅射原子化器是利用辉光放电产生的正离子轰击阴极表面,从固体表面直接将被测定元素转化为原子蒸气
C 分光系统(单色器
由凹面反射镜狭缝色散元件组成
色散元件为棱镜或衍射光栅
单色器的性能是指色散率、分辨率和集光本领
D 检测系统率
由检测器(光电倍增管)、放大器、对数转换器和电脑组成
3.最佳条件的选择
A 吸收波长的选择
B 原子化工作条件的选择
a 空心阴极灯工作条件的选择(包括预热时间、工作电流)
b 火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度)
c 石墨炉最佳操作条件的选择(惰性气体、最佳原子化温度)
C 光谱通带的选择
D 检测器光电倍增管工作条件的选择
4.干扰及消除方法
干扰分为:化学干扰物理干扰电离干扰光谱干扰、背景干扰
化学干扰消除办法:改变火焰温度、加入释放剂、加入保护络合剂、加入缓冲剂
背景干扰的消除办法:双波长法、氘灯校正法、自吸收法、塞曼效应
基本原理
火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。
仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。
基本用途
原子吸收光谱仪可测定多种元素,火焰原子吸收光谱法可测到(10)-9g/mL数量级石墨炉原子吸收法可测到(10)-13g/mL数量级。其氢化物发生器可对8种挥发性元素汞、砷、铅、硒、锡、碲、锑、锗等进行微痕量测定。
因原子吸收光谱仪的灵敏、准确、简便等特点,现已广泛用于冶金、地质、采矿、石油、轻工、农业、医药、卫生、食品及环境监测等方面的常量及微痕量元素分析。
参考资料
最新修订时间:2023-05-09 14:00
目录
概述
仪器组成
参考资料