描述随机点分布的随机过程。很多随机现象发生的时刻、地点、状态等往往可以用某一空间上的点来表示。例如,服务台前顾客的到来时刻,真空管阴极电子的发射时刻,可表为实轴上的点。又如,天空中某一区域内星体的分布,核医疗中放射性示踪物质在人体器官的各处出现,不同能级地震的发生,都可用二维以上空间的点表示。点过程就是描述这类现象的理想化的数学模型。它在
随机服务系统、交通运输、物理学和地球物理学、生态学、神经生理学、传染病学、信息传输、核医疗学等很多方面都有应用。
20世纪60年代以前,点过程的研究着重于一维情形。即实轴上的点过程,方法是比较初等的,内容多为考虑
泊松过程的种种推广。以后逐渐扩充到多维及更一般的空间,并与迅速发展的随机测度论及鞅论相结合,无论在内容或方法方面都有了根本性的进展。
一维点过程在点过程的研究中,一维点过程在理论与应用上都占有重要的位置,它的统计规律可以通过三种不同的方式来描述:①点数性质:设N[s,t)表示落在区间[s,t)上随机点的数目,N(A)表示落在集合A上随机点的数目,令B表示实轴上的
波莱尔域(见概率分布),则(N(A),A∈B)是定义在B上的随机测度,这时它只取非负整数值,称为随机计数测度。若把开始观测的时刻记为,则 同分布,则称 为无穷可分点过程。利用随机测度理论,无穷可分点过程的表征问题得到了比较彻底的解决。
随机测度的收敛与极限问题相应于测度序列的各种收敛性,可以定义随机测度(
随机点过程)的
弱收敛、
强收敛、
淡收敛、
依分布收敛等(见概率论中的收敛),并可研究其相互关系,从而进一步研究在一定条件下随机测度序列收敛到某个特殊随机测度的问题。这一类问题与无穷可分点过程理论密切相关。一个有趣的结果是:相互独立的随机点过程的叠加,若满足所谓一致稀疏条件,则叠加过程收敛于泊松过程。它与中心极限定理中独立随机变量的标准化部分和收敛于正态分布的结果相似。类似于特征函数与母函数(见概率分布)在研究随机变量的分布及其极限理论中的作用,对于点过程,也可以定义概率母泛函与拉普拉斯泛函,作为研究其极限问题的重要工具。
点过程与随机几何60年代后,由于自然科学和其他实际问题的需要,产生了大量与点、线、面等几何元素的随机分布有关的概率问题,它们属于随机几何的范畴。例如,研究细胞核中成对染色体的相对位置,需要求出在两同心圆上均匀分布的两随机点距离的概率分布,由研究声波反射而提出的求平均路长问题等。
布丰的投针问题(见概率)可能是最早的这类问题之一,它求出了随机抛一枚针与一组等距离的平行线不相交的概率,从而可以用实验的方法求得
圆周率π的近似值。点过程及其进一步的发展还与随机几何相联系,产生了线过程、面过程、超平面过程、随机分叉树等模型,它们又可以经过一定的变换,变为某一流形上的点过程。例如平面上的一条直线,它以与原点的距离及与坐标轴的交角为参数,可以对应柱面上一点,因而平面上的随机线过程可以表为柱面上的随机点过程。