环中黍尺
清代算书
《环中黍尺》(Huanzhong shuchi)是清代算书一部用投影法讨论球面三角问题的著作。
环中黍尺(Huanzhong shuchi)清代算书一部用投影法讨论球面三角问题的著作.五卷,清梅文鼎撰,成书于1700年.梅文鼎用正投影法把球面投影到平面上,并得到三个性质:
1.大圆上的点皆可为球极投影.
2.纬线的实长等于以纬线投影为直径的半圆周.
3.经线的实长等于大圆的半圆周.
这三个性质是梅氏以正投影法讨论球面三角形问题的主要依据.利用它们,梅氏证明了球面三角的余弦定理,导出了积化和差公式,以加减代乘除,简化了计算,并用以解球面斜三角形.梅氏主要讨论已知三边、两边一夹角、两边一对角、两角夹一边求解余边余角的情形.由于正投影的方法和通过正投影法将球面三角转化到平面上来研究的思想,使《环中黍尺》成为梅文鼎最重要的数学著作,该书版本有李光地上谷刊本、《梅勿庵算书五种》本、《梅氏丛书辑要》本和《中西算学汇通》本.
参考资料
最新修订时间:2023-10-24 13:02
目录
概述
参考资料