直线与方程就是直线的方程,在几何问题的研究中,我们常常直接依据几何图形中点,直线,平面间的关系研究几何图形的性质。我们就
平面直角坐标系中,建立直线的方程,然后通过方程,研究直线的有关性质,如平行,垂直,两直线的交点,点到直线的距离等。解析几何由此成为近代数学的基础之一。
简介
教学目标:
知识与技能
(2) 理解直线的倾斜角的唯一性.
(4) 斜率公式的推导过程,(5) 掌握过两点的直线的斜率公式.
情感态度与价值观
(1) 通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.
(2) 通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解
数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.
教学用具:计算机
教学方法:启发、引导、讨论.
教学过程:
(一) 直线的倾斜角的概念
我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗? 如图, 过一点P可以作无数多条直线a,b,c, 显而易见,答案是否定的.这些直线有什么联系呢?
(1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同?
引入直线的倾斜角的概念:
当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的
倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.
问: 倾斜角α的
取值范围是什么? 0°≤α<180°.
当直线l与x轴垂直时, α= 90°.
因为
平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.
直线a∥b∥c, 那么它们的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.
确定平面直角坐标系内的一条直线位置的几何要素: 一个点P和一个倾斜角α.
一条直线的
倾斜角α(α≠90°)的
正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα
⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;
⑵当直线l与x轴垂直时, α= 90°, k 不存在.
由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.
例如, α=45°时, k = tan45°= 1;
α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1.
学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.
给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率?可用计算机作动画演示: 直线P1,P2的四种情况, 并引导学生如何作辅助线,
共同完成斜率公式的推导.(略)
斜率公式: k=y2-y1/x2-x1
(1) 当x1=x2时,分母为零,公式无意义;
倾斜角α= 90°, 直线与x轴垂直,
直线的斜率不存在;
(2) k与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换,(y2-y1/x2-x1=y1-y2/x1-x2) 但分子与分母不能交换;
(3) 斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;
(4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角α=0°,直线与x轴平行或重合.
(5) 求直线的倾斜角可以由直线上两点的坐标先求
斜率而得到.
(四)直线方程的五种形式
(五)例题:
例1 、已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA的斜率, 并判断它们的
倾斜角是钝角还是锐角.(用计算机作直线)
分析: 已知两点坐标, 而且x1≠x2, 由斜率公式代入即可求得k的值;
而当k <0时, 倾斜角α是钝角;
而当k =0时, 倾斜角α是0°.
略解: 直线AB的
斜率k1=1/7>0, 所以它的倾斜角α是锐角;
直线BC的斜率k2=-0.5<0, 所以它的
倾斜角α是钝角;
直线CA的斜率k3=1>0, 所以它的倾斜角α是锐角.
例2 在
平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 及-3的直线a, b, c, l.
分析:要画出经过原点的直线a, 只要再找出a上的另外一点M. 而M的坐标可以根据直线a的斜率确定; 或者k=tanα=1是特殊值,所以也可以以原点为角的顶点,x 轴的
正半轴为角的一边, 在x 轴的上方作45°的角, 再把所作的这一边反向延长成直线即可.
略解: 设直线a上的另外一点M的坐标为(x,y),根据斜率公式有
1=(y-0)/(x-0) 所以 x = y
可令x = 1, 则y = 1, 于是点M的坐标为(1,1).此时过原点和点 M(1,1), 可作直线a.
同理, 可作直线b, c, l.(用计算机作动画演示画直线过程)
知识点总结
直线的方程:主要学习直线方程的五种形式,应理解并记忆公式的内容。
特别要搞清各个公式的适用范围:
点斜式和
斜截式需要斜率存在,而
两点式不能表示与
坐标轴垂直的直线,
截距式不能表示过原点及与坐标轴垂直的直线。
一般式虽然可表示任意直线但它所含的变量多,故在运用时要灵活选择公式,不丢解不漏解。