离散选择模型,也叫做基于选择的结合分析模型(Choice-Based Conjoint Analysis,CBC),是一种非常有效且实用的
市场研究技术。该模型是在实验设计的基础上,通过模拟所要研究产品/服务的
市场竞争环境,来测量
消费者的购买行为,从而获知消费者如何在不同产品/服务属性水平和价格条件下进行选择。这种技术可广泛应用于
新产品开发、市场占有率分析、
品牌竞争分析、市场细分和价格策略等
市场营销领域。同时离散选择模型也是一种处理离散的、非线性的定性数据的复杂高级多元统计分析技术,它采用Multinomial Logit Model进行数据统计分析。这项技术最初是由
生物学家发明的,生物学家利用这种方法研究不同数量的
杀虫剂对昆虫是否死亡的影响。
基础
1.一般原理
离散选择模型的一般原理为随机效用理论(random utility theory):设选择者有J个备选项,分别对应一定的效用U,该效用由固定与随机两部分加和构成,固定效用V能够被一定的可观测要素x所解释,而随机部分ε代表了未被观测的效用及误差的影响。选择者的策略为选择效用最高的备选项,那么每个备选项被选中的概率可以表示为其固定效用的函数:P=F(V),函数的具体形式取决于随机效应的分布。在大多数模型设定中,可见效用V被表述为解释要素x的线性组合形式,即V=βx,β为系数,其取值和
显著性水平可由观测数据估出。
2.应用价值
离散选择模型的应用领域广泛,其中市场与交通是最主要的两个方面。
市场研究中经典的效用理论和
联合分析(conjoint analysis)方法与离散选择模型有直接渊源,其研究主题亦与模型高度契合,即通过分析
消费者对不同商品、服务的选择偏好,测度、检验、预测市场需求。在交通领域,利用离散选择模型分析个体层面对
目的地、交通方式、路径的选择行为,进而预测交通需求的方法,比传统的交通小区层面的集计方法具有显著的优势,已成为研究前沿。此外,地理、环境、
社会、空间、
经济、
医学、
教育、
心理等领域的
应用研究亦较多见。
离散选择模型的主要价值包括以下3个方面:
(1) 揭示行为规律。通过对β估计值的符号、大小、显著性的分析,可以判断哪些要素真正影响了行为,其方向和重要程度如何。对于不同类型的人群,还可以比较群组间的差异。
(2) 估计
支付意愿。一般通过计算其他要素与价格的系数之比得到该要素的货币化价值,该方法也可推广到两个非价格要素上。值得注意的是,有一类研究通过直接向受访者抛出价格进而征询其是否接受的方式,估计个体对物品、设施、政策的支付意愿,这种被称为意愿价值评估(contingent valuation method, CVM)的方法广泛应用于对无法市场化的资源、环境、历史文化等的评价,应用案例有:Breffle等(1998)对未开发用地、Treiman等(2006)对社区森林、Báez-Montenegro等(2012)对文化遗址价值的研究。
(3) 展开模拟分析。一般以“what-if”的方式考察诸如要素改变、政策实施、备选项增减等造成的前后差异,或是对方案、情景的效果进行前瞻。例如,Yang等(2010)模拟了高铁进入后对原有交通方式选择的影响;Müller等(2014)模拟了两种不同的
连锁店布局方案分别的
经济效益。以上模拟都是在集合层面上进行的,相比之下,个体层面的模拟更加复杂。有的研究基于个体的最大可能选择,例如Zhou等(2008)对各地用地功能变更的推演模拟;更多研究是借助蒙特卡洛(Monte Carlo)方法进行
随机抽样,例如Borgers等(2005,2006)分别在宏观、微观尺度下对行人在商业空间中连续空间选择行为的模拟。
3.基础模型形式:多项Logit模型
多项
Logit模型(multinomial logit model, MNL)是最简单的离散选择模型形式,它设定随机效用服从独立的极值分布。
MNL模型是整个离散选择模型体系的基础,在实际中也最为常用,一方面是由于其技术门槛低、易于实现;另一方面也与其简洁性及由此带来的稳健、通用性,表现为样本要求低、技术成熟、出错率少等分不开的(Ye et al, 2014)。虽然MNL模型存在的固有理论缺陷(如假设随机效用独立),使得在一些复杂问题上采用更加精细化的模型更为适宜,但根据Hensher等(2005)的看法:前期应以MNL模型为框架投入50%以上的时间,将有助于模型的整体优化,包括发现更多解释变量、要素水平更为合理等。可见,MNL模型尽管较为简单,但其基础地位在任何情况下都举足轻重,应当引起研究者的高度重视。
主要应用
离散选择模型主要用于测量
消费者在实际或模拟的市场竞争环境下如何在不同产品/服务中进行选择。通常是在正交
实验设计的基础上,构造一定数量的产品/服务选择集(Choice Set),每个选择集包括多个产品/服务的轮廓(Profile),每一个轮廓是由能够描述产品/服务重要特征的属性(Attributes)以及赋予每一个属性的不同水平(Level)组合构成。例如消费者购买手机的重要属性和水平可能包括:品牌(A,B,C)、价格(1500元,1750万元,2000元)、功能(短信,短信语音,图片短信)等,离散选择模型是测量消费者在给出不同的
产品价格、功能条件下是选择购买品牌A,还是品牌B或者品牌C,还是什么都不选择。离散选择模型的一个重要的假定是:消费者是根据构成产品/服务的多个属性来进行理解和作选择判断;另一个基本假定是:消费者的选择行为要比偏好行为更接近现实情况。
它与传统的全轮廓结合分析(Full Profiles Conjoint Analysis)都是在全轮廓的基础上采用分解的方法测量消费者对某一轮廓(产品)的选择与偏好,对构成该轮廓的多个属性和水平的选择与偏好,用效用值(Utilities)来描述。
但是,它与传统的结合分析的最大区别在于:离散选择模型不是测量消费者的偏好,而是获知
消费者如何在不同竞争产品选择集中进行选择。因此,离散选择模型在价格研究中是一种更为实际、更有效、也更复杂的技术。具体表现在:
离散选择模型主要采用离散的、非线性的Multinomial Logit统计分析技术,其因变量是消费者在多个可选产品中,选择购买哪一种产品;而自变量是构成选择集的不同产品属性。
目前统计分析软件主要有SAS/STAT统计过程和SAS Market模块,二者均采用SAS/STAT Proc PHREG过程—比例风险回归(Proportional Hazards Regression)分析。另外,Sawtooth软件公司开发了专用的CBC市场研究分析软件(Choice-Based Conjoint Analysis),该软件集成了从选择集实验设计、问卷生成、数据收集到统计分析,市场模拟等离散选择模型的市场研究全过程。