莲花效应(Lotus Effect),又叫荷叶效应,指
莲叶表面具有
超疏水(superhydrophobicity)以及自洁(self-cleaning)的特性。
效应概述
由于莲叶具有疏水、不吸水的表面,落在叶面上的雨水会因
表面张力的作用形成水珠,换言之,水与叶面的
接触角(contactangle)会大于150度,只要叶面稍微倾斜,水珠就会滚离叶面。因此,即使经过一场倾盆大雨,莲叶的表面总是能保持干燥;此外,滚动的水珠会顺便把一些灰尘污泥的颗粒一起带走,达到自我洁净的效果,这就是莲花总是能一尘不染的原因。
巴特洛特他们在显微镜下发现,莲叶的表面有一层茸毛和一些微小的蜡质颗粒,水在这些
纳米级的微小颗粒上不会向
莲叶表面其他方向蔓延,而是形成一个个球体,就是我们看到莲叶上滚动的雨水或者露珠,这些滚动的水珠会带走叶子表面的灰尘,从而清洁了叶子表面。
莲花效应的效率极高。科学家们模拟莲叶的表面,发明了纳米自清洁的衣料和
建筑涂料,只需一点水形成水滴,就可以自动清洁衣物和建筑表面。
一种
仿生复合材料所具有的特性,像
荷叶一样具有自动清洁的功能,故称莲花效应。
刀刃的表面无法被水珠附着的事实已经被验证而且广为人知。但是人们往往会忽视这样的表面同样很难被弄脏。
在一个光滑的表面上脏的颗粒只会随着水滴的滴落而移动,他们附着在水滴滚动时产生的
粗糙表面上从而被洗刷下来。这种关系只在最近才被注意到而且用实验得以证实。
因为在
亚洲文化中被看作纯洁象征物的莲花的大型类似于盾牌形状的叶片上常常可以见到这种现象,所以人们把它成为“莲花效应”。
如果水滴滚过莲花的叶片,它们将卷起所有的灰尘微粒并将它们带离叶片。这个“莲花效应”原理如此有效,以至于即使是在被“蹂躏”过的莲花叶片上依然无法使得水珠和灰尘微粒附着。
特殊的
表面结构和产生蜡质的功能使得莲花的叶片几乎不受其他自然界现象的影响。它与人类对自然界影响的反应很不相同,如对环境中化学
物质的影响反应等等。对于不得不广为使用的属于
表面活性剂的化学物质来说,为了达到保持植物中有效营养成分的目的,它们被全世界的植物代理商广泛使用。这些
活性剂不仅破坏了蜡质
晶体的结构,使得叶片容易被水润湿。而且造成这样的后果:就是植物上的脏物质将无法再被彻底清除,而在不理想的环境中,还将被孢子、真菌或者细菌这些可以感染植物的微生物所侵染。
莲叶效应描绘了一个很有效的生物模型系统,用它可以来制作人工的防污表面,因为它基于一个纯物理化学的原理。
有许多的领域和方面需要这种应用,如衣料的外表面、房顶、自动喷漆器等等。如果可以使得这些领域的自清洁功能得以实现,显然会带来很多好处,而且可以节省清洁花费的费用。在工业合作中,正在努力将莲叶效应转化成实际的技术应用。虽然肯定还需要耗费一些时间,但是肯定迟早会有这种实用的产品走向市场。
效应启示
周敦颐在《
爱莲说》中曾说:「莲花出淤泥而不染」,这正是大自然中神奇的地方。但是为什么呢?后来科学家进一步的研究其构造及原因,并取名为──莲花效应。我们将以此现象作为探讨,深入并研究所能应用的范围和成效。
更深广的意义,影射到我们要学习莲花的自洁功能,无论世界多么肮脏,环境多么恶劣,我们都要出淤泥而不染,一个高尚的人应该如此。
唐代郑允瑞在《咏莲》说:『本无尘土气,自在水云乡;楚楚净如拭,亭亭生妙香。』宋代
周敦颐在《
爱莲说》中道出:『予独爱莲之
出淤泥而不染』的一句话。在自然界中常常有着不为人之的小秘密,而莲的特性古人就早有记载,随着科技的进步,科学家慢慢的分析其中的奥秘。我们将讨论莲出淤泥而不染的真实性!
德国教授巴斯洛得利用人造的灰尘粒子污染赫蕉、倪藤、
玉兰、林山毛榉、莲花、
芋、
甘蓝及Mutisiadecurrens等八种植物的叶面,然后用人造雨清洗两分钟,最后将叶面倾斜15度,使雨水滑落,观察叶子表面灰尘粒子残留的状况。实验发现,前四种植物之叶面,所残留的污染物多达40﹪以上;而后四种植物,污染物所残留的比例皆小于5﹪.
莲之所以出淤泥而不染的原因是
莲叶的表面非常细致,其细致的表面放大千百倍也看不到其中的
细孔,表面结构与粗糙度皆为纳米的尺寸使得表面不沾水,所以灰尘或泥巴都无法吸附在表面上,故污垢自然随水滴从表面滑落。莲花运用自然的
纳米结构达到自洁的效果,如此表面自我洁净的
物理现象称为『莲叶效应』!
效应分析
综述
水滴落在
荷叶上,会变成了一个个自由滚动的水珠,而且,水珠在滚动中能带走和叶表面尘土。荷叶的基本
化学成分是
叶绿素、纤维素、淀粉等
多糖类的
碳水化合物,有丰富的
羟基(-
OH)、(-
NH)等
极性基团,在
自然环境中很容易吸附水分或
污渍。而荷叶叶面都具有
疏水性,洒在叶面上的水会自动聚集成水珠,水珠的滚动把落在叶面上的尘土污泥粘吸滚出叶面,使叶面始终保持干净,这就是著名的“荷叶自洁效应”。
为什么会有这种“莲花效应”,用传统的化学分子极性理论来解释,不仅解释不通,恰恰是相反。从
机械学的
光洁度(
粗糙度)角度来解释也不行,因为它的
表面光洁度根本达不到机械学意义上的光洁度(粗糙度),用手触摸就可以感到它的粗糙程度。
经过两位德国科学家的长期观察研究,即上世纪九十年代初将其归因于其表面微米级的乳突。直到进入二十一世纪,中国科学院的
江雷院士团队揭示”莲花效应“的本质。原来在
荷叶叶面上存在着非常复杂的多重纳米和微米级的
超微结构。在超高分辨率显微镜下可以清晰看到,荷叶表面上有许多微小的乳突,乳突的平均大小约为10微米,平均间距约12微米。而每个乳突有许多直径为200纳米左右的突起组成的。在荷叶叶面上布满着一个挨一个隆起的“小山包”,它上面长满绒毛,在“山包”顶又长出一个馒头状的“碉堡”凸顶。因此,在“山包”间的凹陷部分充满着空气,这样就在紧贴叶面上形成一层极薄,只有纳米级厚的空气层。这就使得在尺寸上
远大于这种结构的灰尘、雨水等降落在叶面上后,隔着一层极薄的空气,只能同叶面上“山包”的凸顶形成几个
点接触。雨点在自身的
表面张力作用下形成球状,水球在滚动中吸附灰尘,并滚出叶面,这就是“莲花效应”能自洁叶面的奥妙所在。
研究表明,这种具有自洁效应的表面
超微纳米结构形貌,不仅存在于
荷叶中,也普遍存在于其它植物中。某些动物的皮毛中也存在这种结构。其实植物叶面的这种复杂的超微
纳米结构,不仅有利于自洁,还有利于防止对大量漂浮在大气中的各种有害的细菌和真菌对植物的侵害。另外,更重要的是,为了提高叶面吸收阳光的效率,进而提高叶面
叶绿体的
光合作用。
探讨接触角
前面谈到
接触角,那么接触角又代表什么意义呢?接触角表示某种液体对于某种材料或者表面的润湿性能。当接触角很小时,如水滴在
玻璃基板上的情形,表示液体易湿润固体表面。但是如果接触角像
水银液滴在玻璃基板上那么大,代表液体不易湿润此表面。因此我们考虑2种极端现象:当接触角为0度时,表示液体能完全的湿润固体表面;当接触角为180度时,代表液体完全不能湿润固体表面。
我们回到
莲叶的接触角,水滴在莲叶上的表面接触角很大时,这代表莲叶与空气间的接口张力很低,小水滴不容易湿润
莲花表面.
探讨莲叶表面
莲叶表面的化学组成为蜡。一般而言,水在一般的腊上
接触角为110度,但是水在莲花的接触角却大于140度,所以除了腊之外,可能还有其它因素使水在莲叶上的接触角大于140度。那到底还有什么因素呢?
其实莲花表面上有类似纤维的
纳米结构。通常表面变得粗糙,会使水分叶面的接触角变大。由于莲叶的表面为腊的
疏水性结构,接触角原本大于90度,再加上粗糙面使水在叶面上的接触角变为大于140度,水滴很难留在其上。
同样地,当灰尘附着于莲叶表面上时,因为莲叶表面的纤毛结构,使灰尘和莲叶的接触面积减少,因此减少了灰尘和莲叶间的吸附力量。而当水滴由叶面上滚过时,由于灰尘和水滴间的
接触面积大,灰尘粒子和水滴间有较强的吸附力,所以很容易就被水滴带走,这就是莲花为何能出淤泥而不染了。由于莲叶表面同时拥有这种纳米尺寸的
物理结构与疏水性的化学组成,因此才具有自洁的功能。
自然界的现象给了科学家无限的想象与创意。把透明疏油、疏水的
纳米材料颗粒作成涂料涂刷在建筑物表面(例如 Ispo 公司),大楼不会被空气中的油污弄脏,镀在窗户玻璃表面上,玻璃也如同
荷叶一般自净而永远透明。或将这种
纳米颗粒放到纤维中,做成防尘的衣物,也许可省去不少洗衣的麻烦。
杨格方程式( Young–Laplace equation )
当液体润湿固体表面时,原本气─固的界面被液─固的界面所取代,而气─固与液─固之
界面张力的差, 称之为“
湿润张力”。当气─固的界面张力大于液─固的界面张力时,也就是固体和液体间的吸引力大于固体和气体间的吸引力时,固体和气体间的界面张力会将液─固界面拉伸。换句话说,被湿润的固体表面有较低的界面张力,因此液体会在固体表面扩张。当液体滴在固体表面上时,固体表面和
液滴切线的夹角,就是所谓的
接触角。而湿润张力和接触角的关系,可以用杨格方程式(en:Young–Laplace equation):
气─固界面张力 - 液─固界面张力的 =气─液界面张力 × 接触角的
余弦函数。
由于水滴在莲叶表面的接触角很大,代表莲叶与空气间的
界面张力很低,水滴不易湿润其表面。
效应应用
模仿莲叶自洁的功能,可以应用于表面
纳米结构的技术,可开发出自洁、抗污的
纳米涂料。有些纳米涂料里渗有
二氧化钛的物质。将二氧化钛等
纳米微粒加到衣服的纤维里头可使普通的衣服化身
为可防震、除臭、杀菌,最重要的是自洁。海岛型气候的地区由于气候
湿热,更需要这种东西。
在自然界这个小小的圈子里,藏着大大的惊奇。有许多事情要试着去接近、感受它,才能得到更多的知识。我们先了解到自然界中许多的生物在人类的
科技进步之前早就有了微观的构造,从
公分、
公厘、甚至达到微米、
纳米,而在莲叶上我们找到了纳米级的细微结构。这种细小的突起物,使得水珠不易吸附在莲叶上。当叶面倾斜到一定角度时,水珠会沿着叶面滑落并带走上面的污染物,达到自洁的效果。这种特性也可以应用在玻璃上,例如:经过纳米处理的玻璃本身也具有自洁的效果,这就可以运用在战机的雷达上。最近许多厂商也利用
纳米技术处理涂料,物体涂上此涂料也将拥有自洁的效果。当这项技术普及化后,世界也将会改观。不会脏的地板、墙壁、和没有灰尘阻挠的无线电用品,将会不断的出现,人类的生活也会更加进步。
莲叶效应描绘了一个很有效的生物模型系统,用它可以来制作人工的防污表面,因为它基于一个纯
物理化学的原理。有许多的领域和方面需要这种应用,如衣料的
外表面、房顶、自动喷漆器等等。如果可以使得这些领域的自清洁功能得以实现,显然会带来很多好处,而且可以节省清洁花费的费用。在
工业合作中,正在努力将莲叶效应转化成实际的
技术应用。虽然肯定还需要耗费一些时间,但是肯定迟早会有这种实用的产品走向市场。
莲叶效应实质为既疏水也疏油的超双疏效应,超双疏纳米材料举例:
经过超双疏技术处理过的各种
纺织材料(棉、麻、丝、毛、绒、
混纺、
化纤等)等不仅显示出疏水疏油性能(包括蔬菜瓜汁、墨水、酱油等各种物质),而且不改变原有织物的各种性能(
纤维强度、
染料亲和性、耐洗涤性、
透气性、皮肤亲和性、免熨性等),甚至还增加了杀菌、防辐射、防霉等
特殊效果。
更为重要的是将从此改变人们大量使用洗涤剂洗衣的习惯,服装将大大减少洗涤次数,洗涤时也只需用水轻漂,大大节约了水资源和时间。
随着科学的进步,莲的更多特性会渐渐被人们发现,利用。