赫斯特指数
英国水文学家哈罗德·赫斯特命名的指数
赫斯特指数(英语:Hurst exponent)以英国水文学家哈罗德·赫斯特命名,起初被用来分析水库与河流之间的进出流量,后来被广泛用于各行各业的分形分析。
摘要
基于重标极差(R/S)分析方法基础上的赫斯特指数(H)的研究是由英国水文专家H.E.Hurst(1900—1978)在研究尼罗河水库水流量和贮存能力的关系时,发现用有偏的随机游走(分形布朗运动)能够更好地描述水库的长期存贮能力,并在此基础上提出了用重标极差(R/S)分析方法来建立赫斯特指数(H)。作为判断时间序列数据遵从随机游走还是有偏的随机游走过程的指标。
形式
一个具有赫斯特统计特性的系统,不需要通常概率统计学的独立随机事件假设。它反映的是一长串相互联系事件的结果。今天发生的事将影响未来,过去的事也会影响现在。这正是我们分析资本市场所需要的理论和方法。传统的概率统计学,对此是难办到的。
赫斯特指数有三种形式:
1.如果H=0.5,表明时间序列可以用随机游走来描述;
2.如果0.5
3.如果0≤H<0.5,表明粉红噪声(反持续性)即均值回复过程。也就是说,只要H≠0.5,就可以用有偏的布朗运动(分形布朗运动)来描述该时间序列数据
计算方法
HURST指数的计算方法主要有七种:聚合方差法(Aggregated Variance method),R/S分析法(R/S method),周期图法(Periodogram method),绝对值法(Absolute Value method),残差方差法(Variance of residuals),小波分析法(Abry-Veitch method),Whittle法(Whittle estimator)。
R/S分析法,即重标极差分析法。用此法计算HURST指数,不仅计算量大,且方法繁杂。所见论文,一般都是针对少数代表性指数,且多半是用月(周)数据分析的。
分析
在应用矩法研究洪水的时间系列时,频率曲线的统计参数之一变差系数表达式中为系列的算术平均值,为均方差,上式表示为均方的形式。其中,变差系数代表着特征值(洪水)对中心的相对变化(相对离差)的平均值,它反映了一段时间系列(n)内变量(洪水)的一般性相对变动程度,因此它受到统计时间系列的长短影响。这是水利行业比较熟悉的频率曲线中的参数。
混沌理论中,自相似分形和分数布朗运动的研究,对于数布朗运动的时间相关性进行了数值方面的分析,简称R/S分析。在水利行业中已有许多应用研究。我们利用变差系数计算中的均值、均方差计算,如果在均方差的统计范围内定义一个极差式子表示为统计时间系列内最大值与最小值之差,极差和均方差的比值随时间(n)基本单调上升(不完全上升),并且和时间(n)有如下幂函数关系。按照时间系列增长,对得到的数组与n一一取对数,并绘制在双对数图上,图中直线部分的斜率就是的指数H,称为赫斯特指数。
英国科学家赫斯特(赫斯特指数)对尼罗河进行长期的水文观测,采用的数据分析方法,称为变标度极差分析法(Rescaledrangeanalysis简称R/S分析法)。通过分析认为各年的流量存在着一定的时间相关性,如尼罗河流量的时间系列曲线的赫斯特指数指数是0.72,相应的分维分形数为1.28,具有正的长时间相关效应。用尼罗河流量时间系列的R/S分析得到的赫斯特指数指数,和随机时间系列的R/S分析得到的赫斯特指数指数显著不同。
人们作过试验,用计算机产生一个随机时间系列曲线,利用均匀随机数给出随机系列,计算它们的赫斯特指数指数,其值接近0.5。如果把尼罗河流量时间系列打乱,再进行R/S分析,得到的赫斯特指数指数值也接近0.5。说明没有时间相关性的随机时间系列曲线的赫斯特指数指数为0.5,R/S分析是分析时间系列曲线相关性的有效方法。也是得出时间系列曲线的分维D(D=2-H)的有效方法。
赫斯特指数还对多种自然现象的时间系列曲线进行了R/S分析,如河湖水位H=0.72,降雨量H=0.70,泥浆沉积H=0.69,温度H=0.68,气压H=0.63,日斑指数H=0.75,树木年轮H=0.80。这些现象平均H=0.726。大多数河流的H为0.65到0.80之间,都具有正效应,表示未来的趋势与过去一致,H愈接近1,持续性愈强。当H<0.5时,序列具有负效应,表示未来的趋势与过去相反,H愈接近0,反持续性愈强。
水文序列的所谓正效应,即干旱愈久,就可能出现持续的干旱;大洪水年过后仍然会有较大洪水。洪涝干旱与地区的气象、土壤、地质等自然地理条件有关,但赫斯特指数指数显示出洪涝干旱具有变化的长程效应。在我省频繁出现的洪旱灾情也具有这种特点,至于相关的规律性,尚需进一步深入研究。 R/S分析法计算简单,统计三个参数,均值均方差极差,用手工的方法确定赫斯特指数指数(关系线的斜率)。适宜有时间序列观测资料的年轻科技人员进行研究。
应用
股市分析
很多学者研究了中国股票市场的混沌特征,不仅说明了股市运行过程中的混沌特征,而且还给出了混沌特征的数量指标。但他们并没有给出混沌吸引子的结构,而它却是混沌状态的基本特征,是描述混沌的基本工具。混沌吸引子具有分形结构,混沌与分形是密切相关的。本论文以上海股市为例,来分析中国股票市场的分形特征。
中国股市具有复杂的混沌结构,而且我们还给出了股票指数收益率序列的混沌结构的数量指标。“这些数量指标都是混沌度的特征指标”。混沌的另一个特征是具有混沌吸引子,吸引子是一个分形,而分形维是刻划分形最重要的指标。分形维数有多种定义,两种最常用的分形维数是豪斯道夫(Hausdorff)维数和盒维数。1983年,Grassberger和Procaccia利用了嵌入理论和相空间重构技术,提出了从时间序列直接计算关联维数的算法。本文也是用此法来计算中国股市混沌吸引子的分形维。设{xk:k=1,…N}是观测某一系统得到的时间序列,将其嵌入到m维欧氏空间中,得该空间中的点集,其元素为:xn(m,τ)=(xn,xn+τ,…,xn+(m-1)τ),n=1,…Nm,其中:Nm=N-(m-1)τ。从Nm个点中任选一个点xi计算其余每个点到该点的距离rij,对所有xi(i=1,…,Nm)重复这一过程,可得到关联积分函数,其中的H(x)当x>0时取1,当x≤0时取0,关联维数D为当r→0时函数logCm(r)/logr的极限
以上证综指日收盘值的对数收益率序列为例,对上证股票市场结构进行分析。按照前述方法进行计算,将序列进行分组,每组有5个元素。图2给出了日收益率序列的ln(R/S)-ln(N)双对数图。在横坐标取5.01之前,数据几乎在一条直线上,对ln(R/S)-ln(N)进行回归计算,得出H的值为0.683,大于0.5,说明上证综指的波动不是随机游走的,而是有偏随机游走,即具有持久性。当指数上一个时刻是上升(下降)的,则下一个时刻上升(下降)的可能性比较大。而从相对长的时间跨度来看,日收益率序列H指数明显下降,接近0.5,即基本遵循随机游走。再考察V-统计量,它的定义为V(N)=(R/S)/。如图3,在横坐标为5.01附近明显出现转折,而此数值是取对数得到的。转换成天数为exp(5.01),即大约150天。在150天循环中,上证综指的波动具有明显的持久性。超过150天,持久性减弱,系统的特征明显改变。
利用G-P算法估计了证券指数收益率序列的混沌吸引子的分形维是介于3到4之间,表明市场在局部的随机性的背后具有全局决定性,即证券市场的运行系统最终会收敛于四个变量决定的混沌吸引子。Hurst指数可衡量一个时间序列统计相关性。通过实证分析得到上证综指的H指数为0.683,大于0.5,说明上证综指收益率序列具有明显的持久性。
Excel中
Hurst指数是描述非函数长周期的重要指标。它有别于传统单位根检验,可以发现时间序列存在的超长周期性,可以用于判断市场风险,但运算相当繁琐,单独利用Excel计算费时又费力,作者在充分理解Hurst指数内涵和应用的基础上,利用Excel的宏语言VBA编写宏程序轻松实现Hurst指数的计算,通过这一工作也希望能使Hurst指数能够得到广泛的应用。
参考资料
最新修订时间:2022-08-25 17:26
目录
概述
摘要
形式
参考资料