单位根检验是指检验序列中是否存在
单位根,因为存在单位根就是
非平稳时间序列了。单位根就是指单位根过程,可以证明,序列中存在单位根过程就不平稳,会使
回归分析中存在
伪回归。
单位根检验是
随机过程的问题。定义
随机序列,t=1,2,…是一单位根过程,若
x_t=ρx_t-1 +ε , t=1,2… 其中|ρ|<1,{ε }为一
平稳序列(
白噪音),且E[ε ]=0, V(ε )=σ <∞, Cov(ε ,ε )=μ <∞这里τ=1,2…。特别地,若ρ=1,则上式就变成一个
随机游走序列,因此随机游走序列是一种最简单的单位根过程。将
定义式改写为下列形式:( 1-ρL)x_t =ε , t=1,2,…其中L为滞后算子,1-ρL为滞后算子多项式,其
特征方程为1-ρz=0,有根z= 1/ρ。当ρ=1时,时间序列存在一个单位根,此时{x_t }是一个单位根过程。当ρ<1时,{x_t }为平稳序列。而当ρ〉1时,{x_t }为一类具有所谓爆炸根的
非平稳过程,它经过
差分后仍然为非平稳过程,因此不为单整过程。一般情况下,单整过程可以称作单位根过程。
单位根检验时间序列的单位根研究是
时间序列分析的一个热点问题。时间序列矩特性的时变行为实际上反映了时间序列的非平稳性质。对非
平稳时间序列的
处理方法一般是将其转变为平稳序列,这样就可以应用有关平稳时间序列的方法来进行相应得研究。对时间序列单位根的检验就是对时间序列平稳性的检验,
非平稳时间序列如果存在单位根,则一般可以通过差分的方法来消除单位根,得到平稳序列。对于存在单位根的时间序列,一般都显示出明显的
记忆性和波动的持续性,因此单位根检验是有关
协整关系存在性检验和序列波动持续性讨论的基础。在经济、金融时间序列中,
常会遇到ρ非常接近1的情况,成为近似单位根现象。近似单位根是介于平稳序列I(0)和单正序列I(1)之间。
在离散
时间序列模型中,如
自回归移动平均(AR-
MA)过程,模型的自回归部分的‘
单位根’表明序列是不平稳的,即随时间的推进,它并没有回到
给定值的趋势(长期均值)。模型的移动平均部分的单位根表明当进一步考察过去时间状态的序列时,此序列不能用一个受到对序列偏差
当前估计的观测影响的自回归表示,即序列是不可逆的。 平稳和可逆的
ARMA模型,不含单位根,总能被表示成无限阶自回归或
移动平均模型。
距离系数滞后于序列本身yt,或修正序列εt,随时间推移变小。博克斯(Box)和詹金斯(Jenkins)(1976年)提供了很全面的有关ARMA模型的介绍。 ARMA(p, q)模型: y-φ1 y-1-…-φpy-p= εt-θ1εt-1-…-θqεq,或利用
滞后算子符号(LkXt≡Xt-k)可表示成φp(L)yt =θq(L)εt。最简单的情况,
自回归模型(AR(1))当|φ1=1时,有一单位根(|φ1|<1时模型是平稳的),移动平均模型(MA(1))当|θ1 |=1时,有一单位根(θ1<1时模型是可逆的)。
纳尔逊(Nelson)和普洛索(Plosser) (1982年)以及后来许多学者都表明ARMA模型的自回归部分出现的单位根在动态
经济模型中有重要的结果。比如,有一个单位根的ARMA模型中
经济变量倾向于回复到没有
确定性的长期增长路径上,同时,当进一步预测将来的情形时,经济序列的水平的
不确定性变得更大。因此,对于一个综合序列(包含一单位根),讨论其‘长期’均值或方差是无意义的。根据商业循环模型,单位根意味着至少序列的部分修正导致了序列水平的永久变化。 ARMA模型中自回归部分的单位根检验问题是复杂的。迪基(Dickey)和
富勒(Fuller) (1979年)给出了回归的单位根“t-
统计量”τ=(φ1-1)/s(φ1)的分布,它不是学生-
t分布。他们阐述了在一般的AR(p)模型中怎样应用这个检验。根据迪基-富勒检验,纳尔逊和普罗夏(1982年)称许多美国年度
宏观经济时间序列似乎有单位根。他们说,这使人们对假设
经济数据是平稳
随机变量,可能在一个确定性的增长路径附近发生偏差的动态经济模型的有用性感到怀疑。 在股票
价格研究中,单位根检验在进行
经济分析时有重要的作用。有关
股票价格(取
对数)的
随机游动模型是带有单位根的AR(1)模型。许多关于
股票市场效率的争论都以
罗伯特·希勒(Robert Shiller)提出的
统计方法为中心。特别是,他的“美国总的股票价格和股息是沿着指数
趋势线变化的随机变量”这一假定已表明对他的“在给定未来股息状态下,股票价格变化‘太大’”这一结论有重要的影响(参见
克莱顿(Klei-don),1986年;
马什(Marsh)和
默顿(Merton), 1986年)。 在迪基-富勒(1979年)之后,一些学者提出了对自回归单位根的其他检验方法,这些方法对一般的ARMA(p, q)过程是适用的。包括赛义德(Said)和迪基(1984年、1985年)、菲利普斯(Phillips, 1987年)及菲利普斯和珀森(Person) (1988年)等提出的方法。这些方法十分吸引人,因为它们不要求研究者对ARMA过程产生的数据作很强的假设,不付出一定的代价这个好处是不会有的。 施韦尔特(Schwert, 1987年、1989年)用蒙特卡洛(Monte Carlo)试验表明当数据产生过程不是简单的AR过程时,这些单位根检验方法对有限
大样本效果较差。特别地,施韦尔特用许多美国二次大战后月度或季度的宏观经济时间序列所符合的ARMA(1, 1)过程表明单位根检验的
样本容量经常比
渐近分布理论所表达的要大。例如,在有1000个观察值的样本下,一个名义上为5%的水平的检验可能错误地拒绝一个96%可能性有单位根的假设。 并且,用检验的功效去区别单位根和自回归根的问题在于它们很接近,除非其中一个特别小,换句话说,研究者相信数据生成过程是平稳的,但又含有很强的自回归循环;研究者如认为过程不平稳,但用
统计检验的方法区别其不同未必靠得住。
移动平均过程中的单位根检验问题同样是复杂的。普洛索和施韦尔特(1977年)表明当序列不能消除一个确定的时间倾向时,在MA过程中就会产生单位根。区别单位根和移动平均根很接近的统计问题类似于上面讨论的AR过程。 最令人惊讶的是美国月度
消费者物价指数通货膨胀率,
实际利率和易变的
股票收益等序列可能含有单位根。相关内容可参见纳尔逊和施韦尔特,1977年;弗伦斯(Frence)、施韦尔特和斯坦博(Stambaugh), 1987年;帕甘(Pagan)和施韦尔特,1990年;以及施韦尔特1987年。因为这些序列都是通过
百分比增长率来表示的,因此怀疑不平稳的原因就消失了。 像年度资本
国民生产总值这样的序列,是许多有关单位根的实用的
宏观经济学文献的焦点,这些可能导致单位根产生的不平稳的来源是容易想象的。比如,技术的进步即经过若干时间积累起来的随机创造会导致
随机游动行为。这样就容易理解名义
价格水平可能包含单位根的许多原因。一方面,通货膨胀率含有一个单位根就意味着(取对数)价格水平含有两个单位根,和那种行为一致的解释的集合是明显地较小。 即使怀疑一特定的经济序列含有单位根,不平稳的来源也是值得考虑的。比如,在消费者物价指数中不稳定的工艺变化可能引起单位根。但原因仅仅是因为劳动统计局在(产品)质量的改变上没有予以准确的调整。 在考察经济时间序列时,对于改变人口
统计特征和计量实践的程度导致的不平稳,许多经济学家能恰当地忽视这些因素,因为它对
经济理论影响甚微。另一方面,假如不平稳的结果来自因为技术或偏好的综和过程,在用数据标定他们错误指定的理论化结构时,对(长期)
增长模型或(短期)商业循环模型感兴趣的经济学家可能犯严重的错误。只有认真地分析这些数据,包括用于产生数据的计量知识,才可能解决这些问题。 用来检验单位根的统计方法存在的弱点必然要求一些非标准的方法。事实上,许多经济时间序列显示了其持续性。关于单位根的争论看来还要持续很长时间。撇开其他的不谈,这些统计学的、经验的文献使许多理论学者把注意力集中在系列
动态模型上,而这些模型可以帮助理解长期行为。