设要计算地球在t=T时的r值,要求计算误差为e,t=0时的初值r0,a0,v0为已知。我们可将0到T的时间间隔划分为n个dt,即令计算步长dt=T/n,然后根据上述,按步长dt从t=0时的初值点推算到t=n·dt=T时的r值。然后将dt二分,即令计算步长dt1=dt/2,再按此新步长值dt1从t=0时的初值点算到t=2·n·dt1=T时的r值为r2,比较一下二分前后的r值,即看一看是否满足条件r2 - r
以上为矢量表达,实际计算中,可将矢量v,r,a分别在x,y轴上投影,可得vx,vy,rx,ry,ax,ay。于是,它们的初始值分别为v0x,v0y,r0x,r0y,a0x,a0y。下面给出地球从初值点经dt时间运行到下一点的递推式,
控制误差范围的条件为分别为二分前后在x,y方向的r值。
以上仅为计算机计算地球轨道的原理。实际上,每二分一次,从0到T时间范围内的dt数量将增加一倍,计算机计算的工作量也将增加一倍。由于计算机的计算速度有限,因此二分次数也是有限的。为提高计算精度,减少计算机的计算工作量,有一些标准化的方法(注1),在此不再熬述。
由上述可知,计算机计算星球轨道主要有两个要点。一是列出递推式,二是确定误差范围的条件。
月球轨道计算见下页。
注释1:参见“计算机数值计算方法及程序设计”一书。该r书由周煦编著。于2004年10月由
机械工业出版社出版。
月球轨道计算
由于地球的运动直接影响月球的运动,因此,先来分析一下地球的受力,如图1-3所示。
在图1-3中,o2x2y2z2坐标系是动坐标系,原点在地球中心。该坐标系跟随地球作平动,且三个坐标轴x2,y2,z2始终分别平行于x,y,z三个坐标轴。r1 是地球的位置矢量,r是月球的位置矢量,r2 是月球相对地球的位置矢量。
F月地是月球对地球的引力,F太地是太阳对地球的引力。设r1 与x,y,z轴的夹角分别为α1,β1,γ1,r与x,y,z轴的夹角分别为α,β,γ,r2 与x2,y2,z2轴的夹角分别为α2,β2,γ2,则,地球在x,y,z方向所受合力为:
因此,地球在x,y,z方向的加速度:
月球的受力如图1-4所示。月球在x,y,z方向所受合力为:
其中,F太月为太阳对月球的引力,F地月为地球对月球的引力。因此,月球的加速度为:
设a的初值为的初值为这样,地球和月球从各自的初值点同时出发,经dt时间后,地球就到达了它的下一点于是可得如下递推式:
(见下页)
控制计算误差的6个条件为:
其中分别为二分前后算出的地球坐标。再次说明一下,以上月球轨道的计算仅是计算机计算原理,实际编程应采取一些标准化方法,以提高计算精度,减少计算机的计算工作量。
在月球轨道计算上,我已做到了,一天的计算误差e<0.001米(即在x,y,z轴方向的计算误差e),也就是说一年的计算误差e<365×0.001=0.365米。要核实
万有引力公式本身和实际情况的相差程度,可取两组实际观测值,一组观测值作为计算的初值,另一组观测值作核实之用,即核实用万有引力公式来计算的星球轨道的准确程度。下面采用一组实际观测值(注2)作为计算初值,让计算机来计算一下月球的轨道。初值为:
计算结果
以上计算的时间范围是2006年。月球轨道半径最大和最小值都是指平均值。观测值由
紫金山天文台的工作人员提供。以上计算取计算时间t=366天,坐标计算误差e< 0.366米。计算周期时,时间计算误差小于0.05秒。由于天文台提供的月球数据是相对地球坐标系的,地球坐标系和本文所述的动坐标系的关系是,将地球坐标系的yz平面以x轴为转轴旋转一个黄赤交角,就是本文所述的动坐标系。本文取黄赤交角为2326′。
注释2:作为计算初值的观测值的对应时刻为,2006年北京时间3月15日7时47.5分。该时刻恰好为半影月食的食甚时刻。为方便计算, 本文把该时刻定为零时刻。
下面给出从2006年3月月食食甚时刻计算到9月月食食甚时刻的地球和月球坐标。数据如下。
地球坐标(单位:米)
观点:天体轨道的量子公式
假设
二十世纪初
玻尔等提出的空间量子化(轨道量子化)理论,在物理界引起了一场深刻的革命,从此人们认为在微观和宏观之间有着不可逾越的鸿沟。实际上,如果我们引入了时间量子化概念,便会发现微观和宏观之间有着深刻的、奇妙的联系。
难以想像在数学形式完全一样的引力场中运动的物体怎么会有迥异的轨道性质,让我们作个一般假设:在引力场
V1/r=-P/r (P为和系统有关的常数)
作用下,在其中作轨道运动的物体当其轨道满足下式时,或者更确切地说当其轨道在下式所规定的附近时,其轨道的稳定性有一小而尖的峰值:
an=n2a0,(n=1,2,3……), ⑴
Tn=n3T0,(n=1,2,3……), ⑵
其中a0、T0为和系统有关的常数,an、Tn为第n号轨道的半长径、周期。
当V1/r是由类氢原子核产生的库仑场时,上式和玻尔的第一、二假设是相当的,可以互相推出,在此就不必验证了。
当V1/r是由中心天体产生的牛顿场时,笔者发现可由下式确定a0、T0:
a0 = k1M 1 , ⑶
T0 = k2M 2 , ⑷
其中M 为中心天体的质量,常数
c1 =0.7100±0.0010 ,k1 =1.978×10-12
c2 =0.5650±0.0015 ,k2 =2.141×10-12。
验证
由表1可看出式⑴的结果要比玻得定则的好,然而不如其变种贝拉格和里查逊公式,但它们都硬性规定系数,形式繁杂,物理意义不明显,近乎数学游戏。
还有与玻得定则及其变种不同的是,式⑴所取的n值不连续。这是缺憾吗?显然我们该想到彗星和小行星的轨道,它们也满足式⑴成立的先提条件。
表2中有多个彗星占据一个轨道号的情况,这就是常说的轨道带,——是否对应量子力学的‘能级简并’?
⒉ 行星-卫星系统
表3、4给出了木卫系统和天卫系统的验证。
读者可能已经发现,轨道带卫星的偏心率明显地比单独占有一个轨道的卫星的大;而在太阳系内偏心率大的天体一般也是轨道带天体。多么奇妙的相似!显然有其内在联系。
⒊ 星系团系统
如果伴星系的确是绕中心星系作轨道运动的,那么表5所给出的结果的确令人振奋。其中a0值由观测值拟合得到,M值则由式⑶反推得到。