量子化学计算方法
理论化学的分支学科
量子化学(quantum chemistry)是理论化学的一个分支学科,是应用量子力学的基本原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。
分类
主要分为:①分子轨道法(简称MO法,见分子轨道理论);②价键法(简称VB法,见价键理论)。以下只介绍分子轨道法,它是原子轨道对分子的推广,即在物理模型中,假定分子中的每个电子在所有原子核和电子所产生的平均势场中运动,即每个电子可由一个单电子函数(电子的坐标的函数)来表示它的运动状态,并称这个单电子函数为分子轨道,而整个分子的运动状态则由分子所有的电子的分子轨道组成(乘积的线性组合),这就是分子轨道法名称的由来。
分子轨道法的核心是哈特里-福克-罗特汉方程,简称HFR方程,它是以三个在分子轨道法发展过程中做出卓著贡献的人的姓命名的方程。1928年D.R.哈特里提出了一个将电子体系中的每一个电子都看成是在由其余的 -1个电子所提供的平均势场中运动的假设。这样对于体系中的每一个电子都得到了一个单电子方程(表示这个电子运动状态的量子力学方程),称为哈特里方程。使用自洽场迭代方式求解这个方程(见自洽场分子轨道法),就可得到体系的电子结构和性质。哈特里方程未考虑由于电子自旋而需要遵守的泡利原理。1930年,B.A.福克和J.C.斯莱特分别提出了考虑泡利原理的自洽场迭代方程,称为哈特里-福克方程。它将单电子轨函数(即分子轨道)取为自旋轨函数(即电子的空间函数与自旋函数的乘积)。泡利原理要求,体系的总电子波函数要满足反对称化要求,即对于体系的任何两个粒子的坐标的交换都使总电子波函数改变正负号,而斯莱特行列式波函数正是满足反对称化要求的波函数。将哈特里-福克方程用于计算多原子分子,会遇到计算上的困难。C.C.J.罗特汉提出将分子轨道向组成分子的原子轨道(简称AO)展开,这样的分子轨道称为原子轨道的线性组合(简称LCAO)。使用LCAO-MO,原来积分微分形式的哈特里-福克方程就变为易于求解的代数方程,称为哈特里-福克-罗特汉方程,简称HFR方程。
RHF 方程
闭壳层体系是指体系中所有的电子均按自旋相反的方式配对充满某些壳层(壳层指一个分子能级或能量相同的即简并的两个分子能级)。这种体系的特点,是可用单斯莱特行列式表示多电子波函数(分子的状态),描述这种体系的HFR方程称为限制性的HFR方程,所谓限制性,是要求每一对自旋相反的电子具有相同的空间函数。限制性的HFR方程简称RHF方程。
UHF 方程
开壳层体系是指体系中有未成对的电子(即有的壳层未充满)。描述开壳层体系的波函数一般应取斯莱特行列式的线性组合,这样,计算方案就将很复杂。然而对于开壳层体系的对应极大多重度(所谓多重度,指一个分子因总自旋角动量的不同而具有几个能量相重的状态)的状态(即自旋角动量最大的状态)来说,可以保持波函数的单斯莱特行列式形式(近似方法)。描述这类体系的最常用的方法是假设自旋向上的电子(自旋)和自旋向下的电子(β自旋)所处的分子轨道不同,即不限制自旋相反的同一对电子填入相同的分子轨道。这样得到的HFR方程称为非限制性的HFR方程,简称UHF方程。
从头计算法
原则上讲,有了HFR方程(不论是RHF方程或是UHF方程),就可以计算任何多原子体系的电子结构和性质真正严格的计算称之为从头计算法。RHF方程的极限能量与非相对论薛定谔方程的严格解之差称为相关能。对于某些目的,还需要考虑体系的相关能。UHF方程考虑了相关能的一小部分,更精密的作法则须取多斯莱特行列式的线性组合形式的波函数,由变分法求得这些斯莱特行列式的组合系数。这些由一个斯莱特行列式或数个斯莱特行列式按某种方式组合所描述的分子的电子结构称为组态,所以这种取多斯莱特行列式波函数的方法称为组态相互作用法(简称CI)。
参考资料
最新修订时间:2023-06-01 11:31
目录
概述
分类
参考资料