阿塔卡马大型毫米波/亚毫米波阵列(英语:Atacama Large Millimeter/submillimeter Array, ALMA)位于
智利北部
阿塔卡马沙漠,是由
射电望远镜构成的天文干涉仪。因为具备“高海拔”和“空气干燥”两绝佳条件,这对毫米和次毫米波长的观测至关重要,阵列最终选择设在5,000米的查南托高原上,附近还有拉诺德查南托天文台 (Llano de Chajnantor Observatory) 和阿塔卡马探路者实验。ALMA 望远镜阵列有 54 座口径宽 12 米的天线以及 12 座口径 7 米的天线,总共 是66 座天线一起协同工作。每个天线个别收集来自太空的辐射,并将讯号聚焦在天线上的接收机上。然后,所有天线取得信号经由专用的“
超级计算机”--相关器 (correlator)处理,最后汇总在一起。66 座 ALMA 天线可用不同的配置法排成阵列,天线间的距离变化多样 ,最短可以是 150 米,最长可以到 16 公里。若与过去的望远镜系统做比较,在毫米及次毫米波段上,ALMA能看到更暗的天体,同时能得到更高的影像分辨率。
简介
阿塔卡马大型毫米波/亚毫米波阵列(英语:Atacama Large Millimeter/submillimeter Array, ALMA)位于
智利北部
阿塔卡马沙漠,是由
射电望远镜构成的天文干涉仪。因为具备“高海拔”和“空气干燥”两绝佳条件,这对毫米和次毫米波长的观测至关重要,阵列最终选择设在5,000米的查南托高原上,附近还有拉诺德查南托天文台 (Llano de Chajnantor Observatory) 和阿塔卡马探路者实验。ALMA 望远镜阵列有 54 座口径宽 12 米的天线以及 12 座口径 7 米的天线,总共 是66 座天线一起协同工作。每个天线个别收集来自太空的辐射,并将讯号聚焦在天线上的接收机上。然后,所有天线取得信号经由专用的“
超级计算机”--相关器 (correlator)处理,最后汇总在一起。66 座 ALMA 天线可用不同的配置法排成阵列,天线间的距离变化多样 ,最短可以是 150 米,最长可以到 16 公里。若与过去的望远镜系统做比较,在毫米及次毫米波段上,ALMA能看到更暗的天体,同时能得到更高的影像分辨率。
名为毫米及次毫米波阵列的
ALMA望远镜在毫米波和次毫米波的
波长上进行观测,观测波段为0.3mm到9mm,分辨率高达4毫角秒,成像比哈伯
太空望远镜锐利十倍。由于站台位址条件极佳,再加上ALMA前所未有的探测灵敏度、角分辨率、频谱分辨率和成像品质,使得天文学家可以在更广泛的天文学领域里进行新的研究,可望探测最早的恒星和星系起源、甚至直接捕捉行星形成时的影像。 ALMA从2011年的下半年开始科学观测,在2011年10月3日向新闻界释出第一张图像,全面运作始于2013年3月。 根据ALMA官方于2016年3月31日发布最新成果,高达1AU解析力的长蛇座TW星照片,精细度号称为望远镜观测原行星盘之“史上最佳代表作”。
概观
由66架高精度的天线组成,观测波段在0.3至9.6mm的
波长的
ALMA阵列,灵敏度和解析力均较现有次毫米望远镜更高(如单镜的James Clerk Maxwell Telescope)、
次毫米波阵列望远镜(SMA,Submillimeter Array)、位于德布赫高原的IRAM等。
它的概念类似于
美国新墨西哥州甚大天线阵列(VLA)的站台,天线可以在沙漠高原上移动,移动距离范围从150米到16公里,这使ALMA的缩放功能强大,观测目标更为多样化。阵列是由较多望远镜组成时,所提供的灵敏度也较高。
望远镜阵列由三种不同型的天线组成:美国规格的有25座,欧洲制造的也有25座,日本的阿塔卡马密集阵列(ACA,Atacama Compact Array)有16座,其中又分“4大、12小”(大的口径是12米,小的是7米)。ACA阵列既加强ALMA取得的天文影像品质,也扩大ALMA的成像视场。
历史
ALMA的概念源自于后来合而为一的三个天文专案 -美国的“微米阵列”(MMA,Millimeter Array)、欧洲的“大南方阵列”(LSA,Large Southern Array)和日本的“大毫米波阵列”(LMA,Large Millimeter Array)。为了深入探索宇宙,1990年代前后,本来三组天文学家都在计划建造大型天文台,观测毫米波:美国有“MMA阵列计划”,欧洲人想在南半球盖一个叫做“LSA”的南天阵列,日本人的计划是“LMSA次毫米波阵列计划”。ALMA跨出的第一步是在1997年,NRAO,National Radio Astronomy Observatory )和
欧洲南方天文台(ESO)同意合并MMA和LSA为一,合并的阵列要兼具MMA的频率范围和LSA的灵敏度。ESO和NRAO并加入加拿大和西班牙的两个天文台(后者在后来成为ESO成员),一起在技术、科学、和管理上定义组织一联合专案。
经决议协定,1999年3月,新阵列名称定为“阿塔卡马大型毫米波阵列”或ALMA(Atacama Large Millimeter Array),“alma”在西班牙文的意思是“灵魂”,在阿拉伯文的意思是“知识渊博”或是“博学”。2003年2月25日,北美和欧洲双方签属了协议。2003年11月6日,ALMA举行了奠基仪式,而ALMA的标志也首度公诸于世一年半后,2005年9月14日,日本也决定加入。
日本国立天文台(NAOJ,National Astronomical Observatory of Japan )提案,将负责设计建造阿塔卡马密集阵列(ACA)。该阵列后来命名为森田阵列(Morita Array),以纪念对ALMA望远镜阵列贡献良多的日本电波天文学家
森田耕一郎。
科学成果
2011年夏季,ALMA展开前期科学观测首批公布图像证实极大潜力。首批观测目标之一是一对因为正在碰撞而明显呈现扭曲的星系,称为
触须星系。虽然ALMA没有观察到整个星系合并,但该图像是触须星系在次毫米波段的最清晰图像,它显示从密集的冷气体云形成新的恒星,那是可见光波段不能看到的图像。
干涉 (物理学)
干涉(interference)在
物理学中,指的是两列或两列以上的
波在
空间中重叠时发生
叠加,从而形成新
波形的现象。
例如采用
分束器将一束
单色光束分成两束后,再让它们在空间中的某个区域内重叠,将会发现在重叠区域内的
光强并不是均匀分布的:其明暗程度随其在空间中位置的不同而变化,最亮的地方超过了原先两束光的光强之和,而最暗的地方光强有可能为零,这种光强的重新分布被称作“干涉条纹”。在历史上,干涉现象及其相关实验是证明光的
波动性的重要依据,但光的这种干涉性质直到十九世纪初才逐渐被人们发现,主要原因是相干光源的不易获得。
为了获得可以观测到可见光干涉的相干光源,人们发明制造了各种产生相干光的光学器件以及干涉仪,这些干涉仪在当时都具有非常高的测量精度:
阿尔伯特·迈克耳孙就借助
迈克耳孙干涉仪完成了著名的
迈克耳孙-莫雷实验,得到了
以太风观测的零结果。迈克耳孙也利用此干涉仪测得标准米尺的精确长度,并因此获得了1907年的
诺贝尔物理学奖。而在二十世纪六十年代之后,
激光这一高强度相干光源的发明使
光学干涉测量技术得到了前所未有的广泛应用,在各种精密测量中都能见到
激光干涉仪的身影。现在人们知道,两束
电磁波的干涉是彼此振动的电场强度矢量叠加的结果,而由于光的
波粒二象性,光的干涉也是
光子自身的
几率幅叠加的结果。
参见