有些随机现象需要同时用多个随机变量来描述。例如对地面目标射击,弹着点的位置需要两个
坐标才能确定,因此研究它要同时考虑两个随机变量,一般称同一
概率空间(Ω,F,p)上的n个随机变量构成的n维向量X=(x1,x2,…,xn)为n维随机向量。随机变量可以看作一维随机向量。称n元x1,x2,…,xn的函数为X的(联合)分布函数。又如果(x1,x2)为
二维随机向量,则称x1+ix2(i2=-1)为
复随机变量。 随机变量的独立性 独立性是概率论所独有的一个重要概念。设x1,x2,…,xn是n个随机变量,如果对任何n个实数x1,x2,…,xn都有 即它们的
联合分布函数F(x1,x2,…,xn)等于它们各自的
分布函数F1(x1),F2(x2),…,Fn(xn)的乘积。则称x1,x2,…,xn是独立的。这一定义可以直接推广到每一xk(k=1,2,…,n)是随机向量的情形。独立性的直观意义是:x1,x2,…,xn中的任何一个取值的概率规律,并不随其中的其他随机变量取什么值而改变。在实际问题中通常用它来表征多个独立操作的随机试验结果或多种有独立来源的随机因素的概率特性,因此它对于概率统计的应用是十分重要的。
从随机变量(或向量)x1,x2,…,xn的独立性还可以推出:设Bk是xk取值的空间中的任意
波莱尔集,k=1,2,…,n。设x1,x2,…,xn是独立的,则它们中的任意个都是独立的。但逆之即使其中任何n-1个是独立的,也不保证x1,x2,…,xn是独立的。又如果ƒj(x),i=1,2,…,n,是n个
连续函数或
初等函数(或更一般的
波莱尔可测函数),则从x1,x2,…,xn的独立性可推出ƒ1(x1),ƒ2(x2),…,ƒn(xn)也独立。如果随机变量(随机向量)序列x1,x2,…,xn,…中任何有限个都独立,则称之为独立随机变量(随机向量)序列。 关于随机变量的矩、
特征函数、
母函数及
半不变量,分别见
数学期望、
方差、矩及
概率分布。