傅里叶级数
数学术语
法国数学家傅里叶认为,任何周期函数都可以用正弦函数余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。
来源
法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出。
从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯- 博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。
公式
给定一个周期为T的函数x(t),那 么它可以表示为无穷级数
(j为虚数单位)(1)
其中, 可以按下式计算:
(2)
注意到;是周期为T的函数,故k 取不同值时的周期信号具有谐波关系(即它们都具有一个共同周期T)。k=0时,(1)式中对应的这一项称为直流分量,k=1时具有基波频率,称为一次谐波或基波,类似的有
二次谐波,三次谐波等等。
性质
收敛性
傅里叶级数的收敛性:满足狄利赫里条件周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:
在任何周期内,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个最大值或最小值;
在任何有限区间上,x(t)只能有有限个第一类间断点
吉布斯现象:在x(t)的不可导点上,如果我们只取(1)式右边的无穷级数中的有限项作和x(t),那么x(t)在这些点上会有起伏。一个简单的例子是方波信号。
正交性
所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性,例如,在三维欧氏空间中,互相垂直的向量之间是正交的。事实上,正交是垂直在数学上的的一种抽象化和一般化。一组n个互相正交的向量必然是线性无关的,所以必然可以张成一个n维空间,也就是说,空间中的任何一个向量可以用它们来线性表出。三角函数族的正交性用公式表示出来就是:
奇偶性
奇函数,可以表示为正弦级数,而偶函数,则可以表示成余弦级数:
只要注意到欧拉公式:,这些公式便可以很容易从上面傅里叶级数的公式中导出。
广义傅里叶级数
类似于几何空间上矢量的正交分解,周期函数的傅里叶级数是在内积空间上函数的正交分解。其正交分解从基推广到Legendre(勒让特,1775-1837)多项式和Haar(哈尔,1885-1993)小波基等,称为广义傅里叶级数。
任何正交函数系 ,如果定义在[a,b]上的函数f(x)只具有有限个第一类间断点,那么如果f(x)满足封闭性方程:
(4)
那么级数
(5)
必然收敛于f(x),其中:
(6)
事实上,无论(5)时是否收敛,我们总有:
成立,这称作贝塞尔(Bessel)不等式。此外,式(6)是很容易由正交性推出的,因为对于任意的单位正交基 ,向量x在 上的投影总为 。
最新修订时间:2024-01-17 19:48
目录
概述
来源
公式
参考资料