约翰·卡尔·弗里德里希·高斯
德国数学家
约翰·卡尔·弗里德里希·高斯(德语:Johann Carl Friedrich Gauß,英语:Gauss,拉丁语:Carolus Fridericus Gauss,1777年4月30日–1855年2月23日),德国著名数学家、物理学家、天文学家、几何学家、大地测量学家,毕业于Carolinum学院(现布伦瑞克工业大学),后进入哥廷根大学深造。
人物经历
早年生活
高斯于1777年4月30日出生于不伦瑞克。高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。他曾说,他能够在脑袋中进行复杂的计算。
小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将蔓菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书。
天赋异禀
当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里得几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。
高斯的老师布吕特纳与他助手马丁·巴特尔斯很早就认识到了高斯在数学上异乎寻常的天赋,同时卡尔·威廉·费迪南德布伦瑞克公爵也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起便资助其学习与生活。这也使高斯能够在公元1792–1795年在Carolinum学院(布伦瑞克工业大学的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的证明了正十七边形可以用尺规作图
婚姻生活
高斯于公元1805年10月5日与来自不伦瑞克的约翰娜·伊丽莎白·罗西娜·奥斯特霍夫小姐(1780–1809)结婚。
公元1806年8月21日,他迎来了生命中的第一个孩子乔瑟夫。此后,他又有两个孩子。威廉明(1809–1840年)和路易(1809–1810)。
教授台长
1807年高斯成为哥廷根大学的教授和当地天文台的台长。
人物逝世
高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子乔安娜也离开人世。次年8月4日高斯迎娶第二位妻子弗里德里卡·威廉明娜(1788–1831)。他们又有三个孩子:欧根(1811–1896)、威廉(1813–1883)和特雷泽(1816–1864)。
1831年9月12日他的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。
个人生活
家庭成员
高斯个人的生活因为他的第一任妻子Johanna Osthoff在1809年早逝,以及他的孩子Louis也相继死去而显得黯然失色。高斯跌入一个他从来没有完全恢复的忧郁深渊。他后来再婚,对象是他第一任妻子的朋友,名叫Friederica Wilhelmine Waldeck,但通常称作Minna。当他的第二任妻子在长期的病痛后死于1831年时,他的其中一个女儿Therese接手了整个家庭并且照顾高斯直到他的生命结束。他的母亲则从1817年居住在他家直到1839年她死去。
三岁纠错
高斯三岁时便能够纠正他父亲的借债账目。
快速求和
用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:用50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。
主要成就
17岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。
次年,证明出仅用尺规便可以构造出17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。
高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《算术研究》中,做出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。
高斯在最小二乘法基础上创立的测量平差理论的帮助下,测算天体的运行轨迹。他用这种方法,测算出了小行星谷神星的运行轨迹。
谷神星于1801年被意大利天文学家皮亚齐发现,但因病他耽误了观测,从而失去了这颗小行星的轨迹。皮亚齐以希腊神话中的“丰收女神”(Ceres)对它命名,称为谷神星(Planetoiden Ceres),并将自己以前观测的数据发表出来,希望全球的天文学家一起寻找。高斯通过以前3次的观测数据,计算出了谷神星的运行轨迹。奥地利天文学家Heinrich Olbers根据高斯计算出的轨道成功地发现了谷神星。高斯将这种方法发表在其著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)中。
为了获知每年复活节的日期,高斯推导了复活节日期的计算公式
1818年–1826年间,高斯主导了汉诺威公国的大地测量工作。通过最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著地提高了测量的精度。
高斯亲自参加野外测量工作。他白天观测,夜晚计算。在五六年间,经他亲自计算过的大地测量数据超过100万个。当高斯领导的三角测量外场观测走上正轨后,高斯把主要精力转移到处理观测成果的计算上,写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,他推导了由椭圆面向圆球面投影时的公式,并作出了详细证明。这个理论仍有应用的价值。
汉诺威公国的大地测量工作至1848年结束。这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理和精确,在数据处理上尽量周密和细致,就不能圆满的完成。在当时的不发达的条件下,布设了大规模的大地控制网,精确地确定2578个三角点大地坐标
为了用椭圆在球面上的正形投影理论解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影理论的研究,这项成果成为了微分几何的重要理论基础。他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。但他的非欧几何理论并未发表。也许他是出于对同时代的人不能理解这种超常理论的担忧。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学接受了。
高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken——Thuringer Wald的Inselsberg——哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在。高斯对他勇于探索的精神表示了赞扬。
1840年,罗巴切夫斯基用德文写了《平行线理论的几何研究》一文。这篇论文的发表引起了高斯的注意。他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。高斯最终成为微分几何的始祖(高斯、雅诺斯和罗巴切夫斯基)之一。
出于对实际应用的兴趣,高斯发明了日光反射仪。日光反射仪可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功了后来被广泛应用于大地测量的镜式六分仪
19世纪30年代,高斯发明了磁强计。他辞去了天文台的工作,而转向物理的研究。他与韦伯(1804–1891)在电磁学领域共同工作。他比韦伯年长27岁,以亦师亦友的身份与其合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送出电报。这不仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界第一个电话电报系统。尽管线路才8千米长。
1840年,他和韦伯画出了世界第一张地球磁场图,并且次年,这些位置得到美国科学家的证实。
高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。批评者说他这样做是因为喜欢抢出风头。事实上高斯把他的研究结果都记录起来了。他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。
人物影响
学校方面
下萨克森州哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。
钱币方面
高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。
参考资料
最新修订时间:2024-12-31 18:25
目录
概述
人物经历
参考资料