岩石力学
力学的分支
岩石力学(Rock Mechanics)是一门研究岩石在外界因素(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的学科。又称岩体力学,是力学的一个分支。研究目的在于解决水利、土木工程等建设中的岩石工程问题。它是一门新兴的,与有关学科相互交叉的工程学科,需要应用数学固体力学流体力学地质学土力学、土木工程学等知识,并与这些学科相互交叉。
定义
岩石力学的诞生是以解决岩石工程稳定性问题和研究岩石的破碎条件为目的而诞生的。其研究介质不仅非常复杂,而且存在许多力学性质不稳定性或不确定性因素,这就使得本学科独立的、完善的、系统的基础理论难以建立、岩石力学的发展始终引用和发展固体力学、土力学、工程地质学等学科的基本理论和研究成果,或者引用这些相关学科的研究成果来解决岩石工程中的问题,因此,偏重不同行业应用的岩石力学往往有不同的定义,迄今岩石力学也没有统一的定义。
美国地质协会岩石力学委员会于1964年提出的岩石力学定义为:岩石力学是研究岩石力学性状的一门理论和应用科学,是力学的一个分支,是研究岩石在不同物理环境的力场中产生各种力学效应的学科。该定义概况了岩石破碎和稳定两方面的主题,也概括了岩石在不同物理环境中各种应力状态下的变形、破坏规律。这是一个较广泛、较严密并得到广泛认可的定义。
岩石力学又称为岩体力学。但随着科学技术的发展,岩石与岩体已有严格的区分,因此有人认为应将岩石力学改为岩体力学更切合本学科的研究主题。但是,岩石力学这一名词沿用已久且使用普遍,所以岩石力学和岩体力学是同一学科。
特点
岩石力学是一门应用性很强的学科,岩石力学的研究注重岩石本身的固有特性。在地球表面的岩石,基本上可分为三大类,即火成岩、沉积岩、变质岩。它们形成的时期,最早可在几十亿年之前,在漫长的地质年代中,先后经历了多次构造运动。因此,岩石与人工材料有很大不同。在成岩过程中,组成岩石的矿物颗粒在大小、物理力学性质和热导率等方面都各不相同,因此在岩桨冷却时,颗粒内部和边界会产生微裂纹;另一方面,由于晶体相互间有摩擦阻力,变形受阻,引起应力积累,而形成封闭应力。在此后地质构造的长期作用下,岩石中又形成了各种断裂,如裂隙和断层。裂纹、断裂等在外力作用下都具有随时间而变化的力学性能,即流变性。地壳本身在动力作用下也按一定的速率不断变化。此外,在构造运动,如板块构造、板块碰撞、火山运动、造山运动等的影响下,岩石内部还赋存有地应力,并包含着许多晶体间的滑动面、裂纹、节理、裂隙、层面、弱面、夹层和断层等。因此,岩石是一种非均质、各向异性、非连续、而且内部存在应力的复合地质结构。在结构内部又包括许多力学性质不同的岩石单元,而每个单元本身也往往是非均质、各向异性和非连续的。由此可见,岩石的力学性质远较其他材料复杂,任何岩石力学科学实验、理论分析和计算都必须考虑这些特点,构成了岩石力学研究的基本出发点。
研究内容
(1)岩石的物质组成和结构特征;
(2)岩石和岩体的本构关系(应力—应变关系);
(3)工程岩体的应力、应变和强度理论;
(4)岩石(岩块)室内实验;
(5)岩体测试和工程稳定监测;
(6)地质灾害致灾机理与防控。
基础理论
主要研究:
岩石应力,包括岩体内应力的来源、初始应力(构造应力、自重应力等)、二次应力、附加应力等。初始应力由现场量测决定,常用钻孔应力解除法和水压致裂法,有时也用应力恢复法。二次应力和附加应力的计算常用固体力学经典公式,复杂情况下采用数值方法。
岩石强度,包括抗压、抗拉、抗剪(断)强度及岩石破坏、断裂的机理和强度准则。室内用压力机、直剪仪、扭转仪及三轴仪,现场做直剪试验和三轴试验,以确定强度参数(粘聚力c和内摩擦角φ)。强度准则大多采用库伦-纳维准则。这个准则假定对破坏面起作用的正应力会增加岩石的抗剪强度,其增加量与正(压)应力的大小成正比。其次采用莫尔准则,也可采用格里菲思准则和修正的格里菲思准则。
岩石变形,包括单向和三向条件下的变形曲线特性、弹性和塑性变形、流变(应力-应变-时间关系)和扩容。岩石流变主要包括蠕变和松弛。在应力不变时岩石的变形随时间不断增长的现象称为蠕变。在应变不变时岩石中的应力随时间减少的现象称为松弛。岩石扩容是指在偏应力作用下,当应力达到某一定值时岩石的体积随偏应力的增大而增大的现象。研究岩石变形在室内常用单轴或三轴压缩方法、流变试验和动力试验等,多数试验往往结合强度研究进行。为了测定岩石应力达到峰值后的应力与应变关系,必须应用伺服控制刚性压力机。野外试验有承压板法、水压法、钻孔膨胀计法和动力法等。根据室内外试验可获得应力与应变关系和应力-应变-时间关系以及相应的变形参数,如弹性模量变形模量泊松比弹性抗力系数、流变常数等。
岩石渗流,包括渗透性、渗流理论、渗流应力状态和渗流控制等。对大多数岩石假定岩石中的水流为层流,流速与水力梯度呈线性关系,遵循达西定律。岩石渗透性用渗透系数表示,该系数在室内用渗透仪测定,在野外用压水和抽水试验测定。渗流理论借流体力学原理进行研究。稳定渗流满足拉普拉斯方程。多数岩石内的孔隙(裂隙)水压力可用K.泰尔扎吉有效应力定律计算。为了减小大坝底面渗透压力、提高大坝的稳定性,应当采取渗流控制措施,如抽水、排水、设置灌浆帷幕以延长渗流途径等。
岩石动力性状,研究爆炸、爆破、地震、冲击等动力作用下岩石的力学特性、应力波在岩石内的传播规律、地面振动与损害等。动力特性在室内用动三轴试验研究,野外用地球物理性、爆炸冲击波试验等技术进行研究,波的传播规律借固体力学的理论进行研究。
研究方法
岩石力学的研究方法主要是:科学实验和理论分析。科学实验包括室内试验、野外试验和原型观测(监控)。室内试验一般分为岩块(或称岩石材料,即不包括明显不连续面的岩石单元)试验和模型试验(主要是地质力学模型试验和大工程模拟试验)。野外试验和原型观测是在天然条件下,研究包括有不连续面的岩体的性状,是岩石力学研究的重要手段,也是理论研究的主要依据。理论分析是对岩石的变形、强度、破坏准则及其在工程上的应用等课题进行探讨。在这方面,长期以来沿用弹性理论、塑性理论和松散介质理论进行研究。由于岩石力学性质十分复杂,所以这些理论的适用范围总是有限的。近年来,虽然发展了一些新的理论(如非连续介质理论),但都不够成熟。1960年代以来,数值分析方法和大型电子计算机的应用给岩石力学的发展创造了有利条件。用这种方法和计算设备可以考虑岩石的非均质性,各向异性,应力-应变的非线性和流变性,粘、弹、塑性,等等。但是由于当前岩石力学的试验方法较落后,还无法为计算提供准确的参数及合适的边界条件,使计算技术的应用受到影响。
在研究中,一般应注意以下三个基本问题:①岩石是一种复杂的地质介质,研究工作都须在地质分析,尤其是在岩体结构分析的基础上进行;②研究岩石力学的电要目的是解决工程实际问题,由于在工程实践中岩石力学涉及地球物理学、构造地质学、实验技术、计算技术、施工技术等学科,因此有关学科的研究人员以及工程勘测设计,施工人员的密切合作至关重要;③岩石性质十分复杂,目前使用的理论和方法还不能完全描述自然条件,因此强调在现场对岩石的性状进行原型观测,并利用获得的资料验证或修改理论分析结果和设计方案。对工程实践而言,岩体中的非连续面和软弱夹层往往是控制岩体稳定的主导因素。它们的力学特性,特别是流变性及其对建筑物的影响,日益受到重视。
工程应用
主要研究五个方面:
①地上工程建筑物的岩石地基,例如研究高坝、高层建筑、核电站以及输电线路塔等地基的稳定、变形及处理的问题;②地表挖掘的岩石工程问题,如水库、边坡、高坝、岸坡、 渠道、运河、路堑、露天开采坑等天然和人工边坡的稳定、变形及加固问题;
③地下洞室,如研究地下电站、 水工隧洞 、交通隧道、采矿巷道、战备地道、石油产品库等的围岩的稳定和变形问题,地下开挖施工以及围岩的加固(如固结灌浆 、 锚喷 、 预应力锚固 等)问题;
④岩石破碎,如将岩石破碎成各种所要求的规格,以作为有关建筑材料(建筑物面石、 土坝 护石、 堆石坝 和防波堤 石料、混凝土骨料等);
⑤岩石爆破,如用定向爆破筑坝,巷道掘进和采矿等。此外,岩石力学还应用于某些地质问题的研究,如分析因开采地下矿体和液体而地表下陷、解释地球构造理论、预估地震和控制地震等。
发展概况
岩石力学的发展是与人类的生产活动紧密联系的。在原始社会,人类就利用岩石制作工具和武器。后来逐渐学会在岩石中开采矿石,利用岩石作建筑材料。但是,作为一门学科,岩石力学是近几十年才发展起来的。近年来,世界上建成的大坝,高度已达300米,地下工程的开挖深度已超过3000米,而且更巨大和复杂的岩石工程还在日益增加,从而有力地促进岩石力学的发展。1951年在奥地利萨尔茨堡成立了国际上第一个地区性的地质力学学会——奥地利地质力学学会。1962年,由奥地利地质力学学会发起,成立了国际岩石力学学会(ISRM),迄今已成功举办12届国际岩石力学大会和许多次区域性专业学术会议,是最活跃的国际学术组织之一。
中华人民共和国成立后不久就开始了岩石力学的研究工作。但系统、全面地发展,并把岩石力学作为一门学科进行研究是从1958年开始的,当年成立了三峡岩基组,开展大规模室内和室外科学实验和理论分析工作,研制出一批仪器设备〈如岩石静力和动力三轴仪),培养出一批骨干力量,为中国岩石力学的发展奠定了基础。此后,成功地解决了长江葛洲坝、大冶露天铁矿等许多巨大工程中的岩石力学问题。在理论方面,中国学者把流变理论应用于岩石力学,并在三峡进行岩体流变试验。后来又发展了岩石蠕变,应力松弛、扩容理论,提出了关于岩石应力的来源和释放的新观点。近年来为了开展对地壳和上地幔的研究(地球动力学的研究对象),中国科学院地球物理研究所研制成高温高压岩石三轴流变仪。1979年起,中国以团体会员国名义参加了国际岩石力学学会并成立了国际岩石力学学会中国小组,1982年成立了中固岩石力学与工程学会(筹备组),第二年出版了《岩石力学与工程学报》。
展望
岩石力学的发展,有如下值得注意的趋势:①从建设的需要看,今后有大量工程要修建在软弱岩石(包括膨胀岩石)之上或在这种岩石之中;对软弱岩石力学,包括对流变性、复杂的本构方程(即应力-应变-时间关系)及相应的计算方法,地应力、地下水对软岩力学性质的影响,软弱岩石加固技术和理论等的研究,将日益显示出重要性。②随着地下空间的利用,地下电站(水电站、火电站、核电站)以及矿源和能源的开发和交通运输等事业的发展,岩石力学的研究重点将日益转向地下。因此,今后对与地下工程有关的岩石力学问题,如快速施工技术、岩爆、瓦斯爆炸、围岩原型监控等将会给予更多的重视。③以往岩石力学的研究对象主要是地壳上部的一个薄层。为了摸清地震机制、成矿规律、大地构造稳定性等问题以及满足深部采矿和采油的需要,今后岩石力学将与地球动力学结合起来。地球动力学主要的研究对象是地壳和上地幔的运动规律,由于地壳构造运动经历时间长,应变率低(约10/秒〉,而且随深度的增加,围压越来越大,温度越来越高,因此在研究中必须考虑时间因素和高温高压等特点。
参考书目
Tan Tjong-Kie,Future Development and Direction in Rock Mechanics,Special Report on 5th Congress ISRM,Melbourne,Australia,1983.
Tan Tjong-Kie and Kang Wen-Fa,Locked in Stresses,Creep and Dilatancy of Rock and Constitutive Equations,Rock Mechanics,Vol.13,pp.5~22,1980.
L. Müller-Salzburg,Der Felsbau,Ferdinand EnkeVerlag,Stuttgart,1978.
参考资料
最新修订时间:2023-09-01 16:32
目录
概述
定义
参考资料