朱旺
湘潭大学材料科学与工程学院教授
朱旺,男,中共党员,1988 年2月生,湖南娄底双峰人,工学博士,湘潭大学材料科学与工程学院教授,博士生导师。
人物经历
教育经历
2009/09-2014/12,湘潭大学材料科学与工程学院,工学博士(硕博连读)
2005/09-2009/06,湖南科技大学物理学院,理学学士
研究工作经历
2014/12-2017/12,湘潭大学材料科学与工程学院,讲师
2018/01-2021/12,湘潭大学材料科学与工程学院,副教授
2022/01-至今,湘潭大学材料科学与工程学院,教授(破格)
2019/01-至今,湘潭大学材料科学与工程学院,博士生导师(破格)
研究方向
超高温涂层的制备及其抗烧蚀性能研究;
热障涂层高温力学性能表征;
热障涂层服役模拟考核与实时检测;
热障涂层的失效机理与可靠性评价
个人简介
朱旺,男,1988 年生,博士,教授(破格),博士生导师(破格)。湖南省首届荷尖人才,湖南省优秀青年基金获得者,湖南省优秀博士学位论文获得者,韶峰学者。现为国防科技重点实验室副主任,湖南省力学学会理事。
长期致力于高温热防护涂层高温力学性能表征、服役环境模拟与失效实时检测、破坏机理和可靠性评价研究,成果应用于航发系统11个单位及其10余个型号。主持JWGF重点项目子课题、ZFB装备预先研究领域基金(快速扶持项目)、国家自然科学基金青年项目、湖南省优秀青年基金、航发企业横向课题(16项)等项目,同时作为核心成员参与了多项国家自然科学基金重大项目、重点项目等项目的研究。在Springer Nature Singapore出版商出版《Thermal Barrier Coatings: Failure Theory and Evaluation Technology》专著1部(排名第三),在科学出版社出版《热障涂层破坏理论与评价技术》专著1部(排名第三),以第一/通讯作者在J. Mech. Phys. Solids,Int. J. Plasticity,Corros. Sci.,J. Eur. Ceram. Soc.,J. Am. Ceram. Soc.等期刊发表SCI论文28篇,申请国家发明专利5项(实审),授权国家发明专利6项;制定《航空发动机热障涂层试验验证方法》国军标1套(排名第三),含11个标准;2020年获得湖南省自然科学一等奖1项(排名第六),2022年获得湖南省教学成果奖一等奖1项(排名第五)。担任Coatings杂志特刊“Preparation and Failure Mechanism of Thermal Barrier Coatings”客座编辑。
主讲课程
《材料的宏微观力学性能》(国家精品课程);《材料固体力学》
获奖情况
湖南省优秀青年基金获得者(湖南省优青)
湖南省优秀博士学位论文奖
湖南省首届荷尖人才
亚太材料青年科学家论坛优秀邀请报告奖
北京大学力学全国博士生论坛优秀报告奖
中国有色金属科技论文奖优秀奖
湖南省自然科学奖一等奖
湖南省教学成果奖一等奖
湖南省优秀研究生导师团队
麓山杯创新创业大赛决赛二等奖
科研项目
1. 湖南省荷尖人才项目(编号:2022RC1082),2023/01-2025/12,在研,主持。
2. 湖南自然科学基金优秀青年基金项目,基于特征频谱窗口的复杂服役环境下热障涂层损伤识别与表征方法(编号:2020JJ3031),2020/01-2022/12,在研,主持。
3. 湖南省教育厅重点项目,1600℃下新型A6Ta2O17热障涂层高温力学性能原位表征及失效机理(编号:21A0120),2022/01-2024/12,在研,主持。
4. 国家自然科学基金青年项目,TGO本构关系温度相关性的DIC表征及机制(编号:11602211),2017/01-2019/12,结题,主持。
5. 湖南省教育厅优秀青年项目,TGO生长过程中应力应变关系的DIC表征(编号:16B249),2017/01-2019/12,结题,主持。
6. 湖南省自然科学基金青年项目,热力化多场耦合作用下热障涂层界面氧化的失效分析(编号:2017JJ3307),2017/01-2019/12,结题,主持。
主要代表性论文
[1] Z.Y. Tan, X. Wu, W. Zhu*, J.W. Guo, W. Wang, Z.S. Ma. Ultra-high hardness induced by W precipitation within Ta-Hf-W-C ultra-high temperature ceramic coatings. Journal of the European Ceramic Society, 2022, 42: 6288-6294.
[2] S. Liu, X.P. Hu, Q. Liu, J.W. Guo, J.Y. Wu, W. Zhu*. Effect of HfO2 content on CMAS corrosion resistance of a promising Hf6Ta2O17 ceramic for thermal barrier coatings. Corrosion Science, 2022, 208: 110712-110721.
[3] Z.Y. Tan, X. Wu, J.W. Guo, W. Zhu*. Toughness mechanism and plastic insensitivity of submicron second phase Ta in a novel Ta-Hf6Ta2O17 composite ceramic. Ceramics International, 2022 (In press).
[4] Q. Liu, X.P. Hu, W. Zhu*, G.L. Liu, J.W. Guo, J. Bin. Thermal shock performance and failure behavior of Zr6Ta2O17-8YSZ double-ceramic-layer thermal barrier coatings prepared by atmospheric plasma spraying. Ceramics International, 2022, 48: 24402-24410.
[5] Z.P. Zhou, W.Z. Yuan, W. Zhu*, X.P. Hu, Y. Zou, Q. Wu, H.Q. Wei. In situ measurements of the high-temperature mechanical properties of ZrO2-doped YTaO4 ceramic by three-point bending combined with a digital image correlation method. Ceramics International, 2022, 48: 1323-1331.
[6] Y. Zou, L.F. Ge, Z.Y. Li, J.W. Guo, W. Zhu*, Z.S. Ma. Determination of the intrinsic elastic modulus, hardness and fracture strength of thermally growth oxide by nanoindentation and tensile tests. Engineering Failure Analysis, 2022, 131: 105815.
[7] Z.Y. Tan, X. Wu, G. Yang, J.W. Guo, W. Zhu*. Structure, mechanical, and micro-scratch behavior of Ta-Hf-C solid solution coating deposited by non-reactive magnetron sputtering. Materials, 2022, 15: 4489-4500.
[8] Z.H. Xie, Q. Liu, K.I. Lee, W. Zhu*, L.T. Wu, R.T. Wu. The effect of bond coat roughness on the CMAS hot corrosion resistance of EB-PVD thermal barrier coatings. Coatings, 2022, 12: 591-605.
[9] X.P. Hu, G.L. Liu, Q. Liu, W. Zhu*, S. Liu, Z.S. Ma. Failure mechanism of EB-PVD thermal barrier coatings under the synergistic effect of thermal shock and CMAS corrosion. Coatings, 2022, 12: 1290-1301.
[10] Z.Y. Tan, C. Luo, W. Zhu*, L. Yang, Y.C. Zhou, Q. Wu. Reactive plasma spraying of supersaturated tungsten super-hard Ta-Hf-W-C solid solution coating. Journal of the European Ceramic Society, 2021, 41: 6772–6777.
[11] Q. Liu, X.P. Hu, W. Zhu*, J.W. Guo, Z.Y. Tan. Effects of Ta2O5 content on mechanical properties and high-temperature performance of Zr6Ta2O17 thermal barrier coatings. Journal of the American Ceramic Society, 2021, 104: 6533–6544.
[12] K. Yuan, L. Yang, Q. Wang, F. Zhang, W. Zhu*, Y.C. Zhou. Al2O3-TiO2 codoped YSZ thermal barrier coatings resistant to damage by molten calcium-magnesium-alumino-silicate (CMAS) glass. Advanced Engineering Materials, 2021, 2001338.
[13] Y.Q. Xiao, L. Yang, W. Zhu*, Y.C. Zhou, Z.P. Pi, Y.G. Wei. Delamination mechanism of thermal barrier coatings induced by thermal cycling and growth stresses. Engineering Failure Analysis, 2021, 121: 105202.
[14] Z.Y. Tan, W. Zhu*, L. Yang, Y.C. Zhou, Q. Wu, L.J. Gong. Microstructure, mechanical properties and ablation behavior of ultra-high temperatureTa-Hf-C solid solution coating prepared by a step-by-step plasma solid solution method. Surface and Coatings Technology, 2020, 403: 126405.
[15] Z.Y. Tan, Z.H. Yang, W. Zhu*, L. Yang, Y.C. Zhou, X.P. Hu. Mechanical properties and calcium-magnesium-alumino-silicate (CMAS) corrosion behavior of a promising Hf6Ta2O17 ceramic for thermal barrier coatings. Ceramics International, 2020, 46: 25242-25248.
[16] W. Zhu, C.X. Zhang, L. Yang, Y.C. Zhou, Z.Y. Liu. Real-time detection of damage evolution and fracture of EB-PVD thermal barrier coatings under thermal shock: An acoustic emission combined with digital image correlation method. Surface and Coatings Technology, 2020, 399: 126151.
[17] W. Zhu, Q. Wu, L. Yang, Y. C. Zhou. In situ characterization of high temperature elastic modulus and fracture toughness in air plasma sprayed thermal barrier coatings under bending by using digital image correlation. Ceramics International, 2020, 46: 18526–18533.
[18] W. Zhu, Z. Y. Li, L. Yang, Y. C. Zhou, J. F. Wei. Real-time detection of CMAS corrosion failure in APS thermal barrier coatings under thermal shock. Experimental Mechanics, 2020, 60: 775–785.
[19] W. Zhu, H. Y. Chen, L. Yang, Y. C. Zhou, G. N. Xu. Phase field model for diffusion-reaction stress field in the thermal barrier coatings corroded by the molten CMAS. Engineering Failure Analysis, 2020, 111: 104486.
[20] Z.Y. Liu, W. Zhu, L. Yang, Y.C. Zhou. Numerical prediction of thermal insulation performance and stress distribution of thermal barrier coatings coated on a turbine vane. International Journal of Thermal Sciences, 2020, 158: 106552.
[21] W. Zhu, X. N. Cai, L. Yang, J. Xia, Z. P. Pi, Y. C. Zhou. The evolution of pores in thermal barrier coatings under volcanic ash corrosion using X-ray computed tomography. Surface and Coatings Technology, 2019, 357: 372–378.
[22] W. Zhu, Z. B. Zhang, L. Yang, Y. C. Zhou, Y. G. Wei. Spallation of thermal barrier coatings with real thermally grown oxide morphology under thermal stress. Materials & Design, 2018, 146C: 180–193.
[23] W. Zhu, Y. J. Jin, L. Yang, Z. P. Pi, Y. C. Zhou. Fracture mechanism maps for thermal barrier coatings subjected to single foreign object impacting. Wear, 2018, 414-415: 303–309.
[24] W. Zhu, J. W. Wang, L. Yang, Y. C. Zhou, Y. G. Wei, R. T. Wu. Modeling and simulation of the temperature and stress fields in a 3D turbine blade coated with thermal barrier coatings. Surface and Coatings Technology, 2017, 315: 443-453.
[25] W. Zhu, L. Yang, J. W. Guo, Y. C. Zhou, C. Lu. Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model. International Journal of Plasticity, 2015, 64: 76–87.
[26] W. Zhu, Y. C. Zhou, J. W. Guo, L. Yang, C. Lu. Quantitative characterization of the interfacial adhesion of Ni thin films on steel substrates: a compression-induced buckling delamination test.Journal of the Mechanics and Physics of Solids, 2015, 74: 19–37.
[27] W. Zhu, M. Cai, L. Yang, J. W. Guo, Y. C. Zhou, C. Lu. The effect of the morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings. Surface and Coatings Technology, 2015, 276: 160–167.
[28] W. Zhu, L. Yang, J. W. Guo, Y. C. Zhou, C. Lu. Numerical study on interaction of surface cracking and interfacial delamination in thermal barrier coatings under tension. Applied Surface Science, 2014, 315: 292–298.
[29] G. N. Xu. L. Yang, Y. C. Zhou, Z. P. Pi, W. Zhu. A chemo-thermo-mechanically constitutive theory for thermal barrier coatings under CMAS infiltration and corrosion. Journal of the Mechanics and Physics of Solids, 2019, 133: 103710.
[30] B. B. Yin, F. Zhang, W. Zhu, L. Yang, Y. C. Zhou. Effect of Al2O3 modification on the properties of YSZ: corrosion resistant, wetting and thermal-mechanical properties. Surface and Coatings Technology, 2019, 357: 161-171.
[31] Z. P. Pi, F. Zhang, J. B. Chen, W. Zhu, L. Yang, Y. C. Zhou. Multiphase field theory for ferroelastic domain switching with an application to tetragonal zirconia. Computational Materials Science, 2019, 170: 109165.
[32] L. Yang, W. Zhu, C. F. Li, Y. C. Zhou*, N. G. Wang, Y. G. Wei. Error and modification in thermal barrier coatings measurement using impendence spectroscopy. Ceramics International, 2017, 43: 4976-4983.
[33] L. Yang, J. Yang, J. Xia, W. Zhu, Y. C. Zhou, Y. G. Wei, R. T. Wu. Characterization of the strain in the thermal barrier coatings caused by molten CaO-MgO-Al2O3-SiO2 using a digital image correlation technique. Surface and Coatings Technology, 2017, 322: 1-9.
[34] Q. Shen, L. Yang, Y. C. Zhou, W. G. Wei, W. Zhu. Effects of growth stress in finite-deformation thermally grown oxide on failure mechanism of thermal barrier coatings. Mechanics of Materials, 2017, 114: 228-242.
[35] L. Yang, H. L. Li, Y. C. Zhou, W. Zhu, Y. G. Wei, J. P. Zhang. Erosion failure mechanism of EB-PVD thermal barrier coatings with real morphology. Wear, 2017, 392-393: 99-108.
[36] N. G. Wang, C. F. Li, L. Yang, Y. C. Zhou, W. Zhu, C. Y. Cai. Experimental testing and FEM calculation of impedance spectra of thermal barrier coatings: effect of measuring conditions. Corrosion Science, 2016, 107: 155-171.
[37] W. Z. Tang, L. Yang, W. Zhu, Y. C. Zhou, J. W. Guo, C. Lu. Numerical simulation of temperature distribution and thermal-stress field in a turbine blade with multilayer-structure TBCs by a fluid-solid coupling method. Journal of Materials Science & Technology, 2016, 32: 452-458.
[38] L. Yang, Z. C. Zhong, Y. C. Zhou, W. Zhu, Z. B. Zhang, C. Y. Cai, C. Lu. Acoustic emission assessment of interface cracking in thermal barrier coatings. Acta Mechanica Sinica, 2016, 32: 342-348.
[39] J. W. Guo, L. Yang, Y. C. Zhou, L. M. He, W. Zhu, C. Y. Cai, C. Lu. Reliability assessment on interfacial failure of thermal barrier coatings. Acta Mechanica Sinica, 2016, 32: 912-924.
[40] L. Yang, H. S. Kang, Y. C. Zhou, W. Zhu, C. Y. Cai, C. Lu. Frequency as a key parameter in discriminating the crack modes of thermal barrier coatings: cluster analysis of acoustic emission signals. Surface and Coatings Technology, 2015, 264: 97–104.
发明专利
[1] 朱旺, 谭振宇, 杨丽, 周益春. 一种强韧化超高致密度抗超高温烧蚀涂层及其制备方法. 中国发明专利, 授权专利号:ZL 202010740164.3, 2022.
[2] 朱旺, 谭振宇, 杨丽, 周益春. 一种超高温陶瓷涂层及其复合材料、制备方法. 中国发明专利, 授权专利号:ZL 202010740168.1, 2021.
[3] 朱旺, 谭振宇, 杨丽, 周益春. 一种热障涂层高温冲蚀的检测方法. 中国发明专利, 授权专利号:ZL 201910219258.3, 2020.
[4] 朱旺, 石黎, 杨丽, 张春兴, 周益春. 一种工作叶片热障涂层服役载荷的等效加载装置及方法. 中国发明专利, 授权专利号:ZL 201811506720.X, 2020.
[5] 朱旺, 罗毅, 杨丽, 周益春. 一种热障涂层服役工况模拟试验用涡轮模型. 中国发明专利, 授权专利号:ZL 201811505725.0, 2020.
[6] 朱旺, 谭振宇, 杨丽, 周益春. 一种金属碳化合物涂层及其制备方法. 中国发明专利, 授权专利号:ZL 201910093291.6, 2020.
[7] 杨丽, 石黎, 朱旺, 张春兴, 周益春. 一种涡轮叶片热障涂层服役载荷的等效加载装置及方法. 中国发明专利, 授权专利号:ZL 201811505740.5, 2020.
[8] 杨丽, 罗毅, 朱旺, 周益春. 一种热障涂层服役工况模拟试验用涡轮模型. 中国发明专利, 授权专利号:ZL 201811506732.2, 2020.
[9] 杨丽, 刘志远, 朱旺, 周益春. 一种涡轮叶片热障涂层的冷却工况加载设备. 中国发明专利, 授权专利号:ZL 201811505711.9, 2020.
[10] 杨丽, 刘志远, 周益春, 朱旺. 一种涡轮叶片热障涂层应用效果的评价方法. 中国发明专利, 授权专利号:ZL 201811173708.1, 2020.
[11] 杨丽, 周益春, 刘志远, 罗毅, 朱旺. 一种涡轮叶片热障涂层工况模拟实验测试系统. 中国发明专利, 授权专利号:ZL 201811505735.4, 2020.
[12] 杨丽, 周益春, 谢志航, 蔡书汉, 朱旺. 一种原位补氧型扫描式电子束气相沉积(IOC-SEVD)装置及其方法. 中国发明专利, 授权专利号:ZL 201810008839.8, 2020.
[13] 杨丽, 谭明, 周益春, 周文峰, 朱旺, 李朝阳. 模拟热障涂层服役环境的火焰喷射装置及火焰喷射方法. 中国发明专利, 授权专利号:ZL 201810008840.0, 2019.
[14] 杨丽, 朱旺, 汤文章, 周益春. 涂有热障涂层的器件的工况模拟方法. 中国发明专利, 授权专利号:ZL 201510534531.3, 2018.
[15] 杨丽, 朱旺, 齐莎莎, 周益春. 一种建立含缺陷的材料模型的有限元建模方法. 中国发明专利, 授权专利号:ZL 201510535275.X, 2018.
[16] 杨丽, 肖逸奇, 周益春, 朱旺. 热障涂层冲蚀率模型及含涂层涡轮叶片冲蚀工况模拟方法. 中国发明专利, 授权专利号:ZL 201610256953.3, 2018.
[17] 杨丽, 尹冰冰, 周益春, 朱旺. 一种熔融CMAS侵蚀热障涂层润湿性能的测试装置及测试方法. 中国发明专利, 授权专利号:ZL 201510551412.9, 2018.
[18] 杨丽, 李郴飞, 周益春, 朱旺, 蔡灿英. 复阻抗谱的检测装置及其方法. 中国发明专利, 授权专利号:ZL 201510641169.X, 2017.
[19] 杨丽, 李晓军, 周益春, 朱旺, 蔡灿英. 含有多条冷却通道的涡轮叶片热障涂层的有限元建模方法. 中国发明专利, 授权专利号:ZL 201410147552.5, 2017.
[20] 杨丽, 李晓军, 周益春, 朱旺, 蔡灿英. 一种涡轮叶片热障涂层的有限元模型的网格划分方法. 中国发明专利, 授权专利号:ZL 201410147512.0, 2017.
[21] 杨丽, 郭进伟, 朱旺, 周益春, 蔡灿英. 一种基于JC算法的热障涂层界面氧化失效可靠性评估方法. 中国发明专利, 授权专利号:ZL 201310142934.4, 2016.
[22] 周益春, 朱旺, 郭进伟, 杨丽. 定量表征薄膜材料界面结合性能的屈曲测试方法及装置. 中国发明专利, 授权专利号:ZL 201210528158.7, 2014.
参考资料
最新修订时间:2023-11-21 19:49
目录
概述
人物经历
研究方向
参考资料