学习经历
· 2000年-2004年,
兰州大学,地理学基地毕业获学士学位
· 2004年-2009年,
兰州大学,
地球系统科学专业毕业获理学博士学位
· 2008年-2009年,美国University of Colorado at Boulder和美国NOAA Paleo-climate Branch,中美联合培养博士研究生
工作经历
2010年-2011年,
兰州大学资源环境学院地球系统科学研究所任讲师
2012年,美国University of Colorado at Boulder和美国
NOAA Paleo-climate Branch访问学者
2011年-2014,
兰州大学资源环境学院地球系统科学研究所任副教授、
硕士生导师
2014年-今,
兰州大学资源环境学院地球系统科学研究所任教授、
博士生导师2016年,美国University of Utah访问学者
2017年,美国California Institute of Technology客座研究员
现任兰州大学资源环境学院党委副书记、院长。
工作分工
主持学院行政全面工作,负责发展规划工作、人事人才工作、财务工作。
研究方向
气候变化
招生专业
地球系统科学
主讲课程
本科生课程(基地班):<
气候学> <自然地理野外综合实习>
研究生课程:<
气候学> <气候变化研究方法> <硕/博士研究生Seminar>
学术兼职
教育部高等学校地理科学类专业教学指导委员会常务副秘书长、国家自然科学基金委、
国家留学基金委、甘肃省科技厅等多个学术部门评审;
、、、< Scientific Reports>、< JGR-Atmosphere>、、、、、、、、、 等国际著名期刊通讯评议人; 中国地理学会会员、中国第四纪科学研究会会员、
中国古生物学会孢粉学分会会员
在研项目
[1] 主持
国家自然科学基金委面上项目:石羊河流域千年尺度
垂直地带性规律与定量重建模型构建 (No. 41571178) 国家级2016.1-2019.12 75万
[2] 主持
国家自然科学基金委面上项目:风成沉积环境与水循环对流域性千年尺度气候变化的响应——以石羊河流域为例 (No. 41371009) 国家级2014.1-2017.12 85万
[3] 主持
国家自然科学基金委青年项目:猪野泽中全新世沉积地层与古湖泊岸堤对比研究(No. 41001116) 国家级2011.1-2013.12 25万
[4] 主持中央高校面上项目:流域性风成与湖相沉积物对气候变化响应的差异性分析——以石羊河流域为例(lzujbky-2013-127) 2013.1- 2014.6 9万
[5] 主持中央高校面上项目:猪野泽沉积物孢粉浓缩物及炭屑AMS C测年 (lzujbky-2010-99) 2010.7- 2012.6 6万
[6] 参与国家自然科学基金委项目:复杂环境下泾河流域汛期难控制利用洪水临界效应研究(No. 51109103)2012.1-2014.12
[7] 参与国家自然科学基金委项目:青海湖小冰期以来气候变化的生态水文效应(No. 40901021)2010.1-2012.12
[8] 参与中央高校项目:阿拉善高原沙漠根管形成时代及其年代学意义(lzujbky-2013-129)2013.1- 2014.6
学术作品
选取10篇代表性SCI论文:
[1] Li, Y., Zhang, C., Wang, N., Han, Q., Zhang, X., Liu, Y., Xu, L., Ye, W., 2017. Substantial inorganic carbon sink in closed drainage basins globally. Nature Geoscience, 10, 501-506. (Impact factor: 13.941)
[2] Li, Y., Liu, Y., Ye, W., Xu, L., Zhu, G., Zhang, X., Zhang, C., 2018. A new assessment of modern climate change, China—An approach based on paleo-climate. Earth-Science Reviews, 177, 458-477. (Impact factor: 7.051)
[3] Li, Y., Morrill, C., 2010. Multiple factors causing Holocene lake-level change in monsoonal and arid central Asia as identified by model experiments. Climate Dynamics 35, 1115–1128. (Impact factor: 4.708)
[4] Li, Y., Morrill, C., 2015. A Holocene East Asian winter monsoon record at the southern edge of the Gobi Desert and its comparison with a transient simulation. Climate Dynamics 45, 1219–1234. (Impact factor: 4.708)
[5] Li, Y., Morrill, C., 2013. Lake levels in Asia at the Last Glacial Maximum as indicators of hydrologic sensitivity to greenhouse gas concentrations. Quaternary Science Reviews 60, 1–12. (Impact factor:4.797)
[6] Li, Y., Xu, L., Zhang, C., Liu, Y., Zhu, G., Zhou, X., 2018. Temporal and spatial evolution of Holocene vegetation and lake hydrological status, China. The Holocene, DOI: 10.1177/0959683617744260. (Impact factor: 2.324)
[7] Li, Y., Wang, N., Zhou, X., Zhang, C., Wang, Y., 2014. Synchronous or asynchronous Holocene Indian and East Asian summer monsoon evolution: a synthesis on Holocene Asian summer monsoon simulations, records and modern monsoon indices. Global and Planetary Change 116, 30–40. (Impact factor: 3.915)
[8] Li, Y., Zhang, C., Wang, Y., 2016. The verification of millennial-scale monsoon water vapor transport channel in northwest China. Journal of Hydrology, 536, 273-283. (Impact factor: 3.483)
[9] Li, Y., Xu, L., 2016. Asynchronous Holocene Asian monsoon vapor transport and precipitation. Palaeogeography Palaeoclimatology Palaeoecology 461, 195-200. (Impact factor: 2.578)
[10] Li, Y., Wang, N.A., Carrie, M., Anderson, D.M., Li, Z., Zhang, C., Zhou, X., 2012. Millennial-scale erosion rates in three inland drainage basins and their controlling factors since the Last Deglaciation, arid China. Palaeogeography, Palaeoclimatology, Palaeoecology 365–366, 263–275. (Impact factor: 2.578)
研究成果
根据现代气候学研究,亚洲夏季风的水汽输送西北边界位于青藏高原东北部的柴达木盆地、祁连山及河西走廊中东部地区,该区域处于戈壁大漠和高原之间的过渡地带,其现代气候过程受到亚洲季风和西风带气流的双重影响,千-百年尺度气候变化过程复杂,在长时间尺度上,该区域的气候变化和湖泊演化对季风系统和西风带环流的响应与机制是过去全球变化研究中一个重要的科学问题。李育的研究方向是夏季风西北缘长时间尺度环境变化、冬夏季风演化和湖泊演化及其机制。研究材料及方法包括:河西走廊猪野泽、盐池等全新世湖泊记录,CCSM3.0古气候模式和湖泊能量-水量平衡模型。创新点包括:(1)在东、中亚地区使用古气候模式和湖泊模型,模拟了长时间尺度冬、夏季风及湖泊水位变化过程;(2)使用河西走廊猪野泽和盐池等全新世湖泊记录证实了亚洲夏季风对季风边缘区的影响;(3)将该区域现代气候过程方法运用于古气候学研究,并结合古气候模拟证实了湖泊表面蒸发对千年尺度湖泊演化的影响。
(1)季风边缘区长尺度冬夏季风及湖泊演化模拟
古气候模拟与湖泊所记录的古气候信息提取是研究过去全球变化的两种重要手段。模拟方法侧重于古气候变化机制研究,而湖泊记录主要用于古气候重建,将二者结合起来灵活运用是理解古气候变化和长尺度水循环过程及机制的重要途径。
我国冬季极端寒冷事件和冰冻灾害与亚洲冬季风的突变有密切联系,探索长时间尺度东亚冬季风变化机制,有助于理解和预测全球变暖背景下冬季风变化趋势。我国之前研究已获取大量冬季风重建的结果,但是这些结果存在差异且很少涉及冬季风演化机制。李育研究组使用the Community Climate System Model version 3 (CCSM3)耦合气候模式,并采用连续气候模拟方法,连续模拟了全新世期间东亚冬季风的演化序列,在此基础上对比了模拟冬季风强度与戈壁沙漠南缘的全新世风成沉积记录,二者具有较好一致性,进一步证实了该项模拟的可靠性。气候模拟结果所揭示的全新世气候变化机制表明:轨道参数所驱动的海、陆温度及气压差异是全新世亚洲冬季风演化的主因,除此之外,全新世早期劳伦太德冰盖和北大西洋冰川融水也是促使早全新世东亚冬季风较强的重要因素。在现代全球变暖背景下,轨道参数和正在消融的北半球高纬度冰川本应伴随较弱的冬季风强度,但是近10年来北半球冬季极端低温事件频发,可能与人类活动有关。
李育等选择了将古气候模式CCSM 3.0和湖泊能量与水量平衡模拟相结合的方式,在东、中亚地区模拟了LGM、早、中、晚全新世湖泊水位变化的过程,并将模拟结果与该区的湖泊水位重建结果进行了对比,二者显示了一致性,在此基础上讨论了东亚季风区和中亚干旱区全新世湖泊水位演化的差异及其机理。这项研究为理解季风边缘区湖泊水循环变化过程做出了重要贡献。研究成果发表于《Climate Dynamics》(一区)、《Quaternary Science Reviews》(一区)、《Global and Planetary Change》(二区)等国际杂志。
石羊河流域位于青藏高原东北缘、河西走廊东段地区,处于我国三大自然区(东部季风区、西北干旱区和青藏高原区)的交汇地带。猪野泽为石羊河流域终端湖泊,猪野泽长时间尺度湖泊演化研究,对于理解三大自然区过渡地带的气候变化过程及机理有重要作用。前人在该区域展开了大量研究,但是关于全新世中期的气候及环境状况存在一些分歧。李育等通过石羊河流域终端湖猪野泽不同位置沉积记录及孢粉组合的对比研究,并结合孢粉浓缩物测年和其他年代学结果对比的方法,推进了猪野泽千年尺度环境变化研究。结果显示:猪野泽地区早全新世环境相对湿润,中全新世阶段水热组合较为适宜,而晚全新世环境趋于干旱。中全新世期间存在一次百年尺度的干旱事件,不同位置的沉积剖面的砂层沉积是这次干旱事件的主要标志物。猪野泽全新世环境变化主要受亚洲夏季风演化控制,同时也受到中纬度西风带气候变化的影响,体现了季风边缘区湖泊演化的特殊性。主要成果发表于《Boreas》、《Palaeogeography, Palaeoclimatology, Palaeoecolog》、《中国科学》和《科学通报》等著名期刊。
盐池位于河西走廊中段,是现代亚洲夏季风水汽输送可到达的边界区域。李育等使用孢粉浓缩物测年、
矿物分析、地球化学指标等方法研究了盐池晚冰期以来
湖泊沉积物,结果显示:盐池晚冰期以来湖泊演化过程与青藏高原区和典型季风区的古气候记录具有一致性,晚冰期及早全新世湖泊扩张,中、晚全新世期间湖泊退缩明显,这种变化显示了千年尺度亚洲夏季风对该区域的影响,证明了夏季风北部边界摆动的事实。主要成果发表于《Palaeogeography, Palaeoclimatology, Palaeoecology》和《地理学报》等著名期刊。
气候变化的现代过程是研究古气候变化的基础。亚洲季风边缘区受到季风与西风气流的双重影响,其古气候变化体现出了一定的复杂性。为探索季风边缘区古气候变化的机制,李育等通过季风边缘区现代降水和过程研究,进一步探讨了该区域气候变化与两大气候系统的联系,并通过现代过程的研究得出该区长尺度气候变化也可能受到两大气候系统相互作用的影响。
同时,蒸发作用是湖泊水循环的重要环节,以往的长尺度湖泊演化研究中,蒸发作用影响仅被停留在讨论之中。为了更加准确地了解蒸发作用对长尺度湖泊演化的影响,李育等研究了猪野泽和青海湖地区的现代蒸发资料,发现这两个湖泊现代蒸发过程的受控因素不同,这种差异可能会影响这两个湖泊长尺度演化过程。主要成果发表于《地理学报》、《Journal of Asian Earth Sciences》、《Environmental Earth Sciences》等著名期刊。
Reference guide of the Late Quaternary climate change for Zhuye Lake and the Hexi Corridor in the Asian monsoon marginal zones, northwest China
河西走廊及猪野泽位于青藏高原北缘的祁连山南麓,处于戈壁大漠和高原之间的过渡地带。在气候上,该区域处于亚洲夏季风的西北缘,部分夏季降水来源于夏季风水汽输送,同时主要受控于中纬度西风带环流,是季风-西风相互作用的关键区域。近年来,该区域晚第四纪环境变化研究取得了大量进展,推动了长时间尺度季风和西风演化的研究,但还存在一些争议。一个主要问题就是该区域文献量比较大,与第四纪相关的论文较多,且学科较杂,不利于相关学者了解该区域的研究状况。本索引旨在整理该区域近年来各相关学科的主要文献,便于第四纪科学研究者了解该区域状况,同时该索引也代表了兰州大学晚第四纪研究在该区域的进展情况。
Zhuye Lake and the Hexi Corridor are located in the northern edge of the Qinghai-Tibetan Plateau, on the northern side of the Qilian Mountains, while in a transition zone between the Gobi desert and highland. The area is in the northwest margin of the Asian summer monsoon. Some summer precipitation is from the summer monsoon moisture transport, while the area is mainly controlled by the mid-latitude westerly circulation, which is a key area for studies on the interactions between the summer monsoon and the westerlies. In recent years, scientists have made a lot of progress on the late Quaternary environmental changes in the area, and promoted the study of long-term monsoon and westerly winds changes, but there are still some controversies. A major problem is that there are a large volume of papers in the area that are related to the Quaternary science while various subjects are involved. That is not conducive for scholars to understand the late Quaternary conditions in the area. The reference guide is designed to organize literatures in relevant disciplines, which is good for scientists to understand the late Quaternary environments easily, while the guide also represents the research progress of Lanzhou University on the late Quaternary environments.
猪野泽湖泊沉积物环境代用指标记录显示,猪野泽地区早全新世环境相对湿润,中全新世阶段水热组合较为适宜,而晚全新世环境趋于干旱。中全新世期间存在一次百年尺度的干旱事件,不同位置的沉积剖面的砂层沉积是这次干旱事件的主要标志物。猪野泽全新世环境变化主要受亚洲夏季风演化控制,同时也受到中纬度西风带气候变化的影响,体现了季风边缘区湖泊演化的特殊性。
[1] Chen, F., Zhu, Y., Li, J., Shi, Q., Jin, L., Wünemann, B., 2001. Abrupt Holocene changes of the Asian monsoon at millennial–and centennial–scales: Evidence from lake sediment document in Minqin Basin, NW China. Chinese Science Bulletin 46, 1942–1947.
[2] Chen, F., Cheng, B., Zhao, Y., Zhu, Y., Madsen, D. B., 2006. Holocene environmental change inferred from a high–resolution pollen record, Lake Zhuyeze, arid China. The Holocene 16, 675–684.
[3]Li, Y., Wang, N., Cheng, H., Long, H., Zhao, Q., 2009. Holocene environmental change in the marginal area of the Asian monsoon: A record from Zhuye Lake, NW China. Boreas 38, 349–361.
[4]Li, Y., Wang, N., Morrill, C., Cheng, H., Long, H., Zhao, Q., 2009. Environmental change implied by the relationship between pollen assemblages and grain–size in NW Chinese lake sediments since the Late Glacial. Review of Palaeobotany and Palynology 154, 54–64.
[5] Long, H., Lai, Z., Wang, N.,Li, Y., 2010. Holocene climate variations from Zhuyeze terminal lake records in East Asian monsoon margin in arid northern China. Quaternary Research 74, 46–56.
2盐池千年尺度气候变化
盐池晚冰期以来湖泊演化过程与青藏高原区和典型季风区的古气候记录具有一致性,晚冰期及早全新世湖泊扩张,中、晚全新世期间湖泊退缩明显,这种变化显示了千年尺度亚洲夏季风对该区域的影响,证明了夏季风北部边界摆动的事实。
[1]Li, Y.,Wang, N., Morrill, C., Anderson, D. M., Li, Z., Zhang, C., Zhou, X., 2012. Millennial–scale erosion rates in three inland drainage basins and their controlling factors since the Last Deglaciation, arid China. Palaeogeography, Palaeoclimatology, Palaeoecology 365–366, 263–275.
[2]Li, Y.,Wang, N., Li, Z., Zhou, X., Zhang, C., 2013. Climatic and environmental change in Yanchi Lake, Northwest China since the Late Glacial: A comprehensive analysis of lake sediments. Journal of Geographical Sciences 23, 932–946.
[3] Yu, Y., Yang, T., Li, J., Liu, J., An, C., Liu, X., Su, X., 2006. Millennial–scale Holocene climate variability in the NW China drylands and links to the tropical Pacific and the North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 233, 149–162.
[4]李育, 王乃昂, 李卓仑, 周雪花, 张成琦, 2013. 河西走廊盐池晚冰期以来沉积地层变化综合分析——来自夏季风西北缘一个关键位置的古气候证据. 地理学报 68(7), 933–944. [Li, Y.,Wang, N., Li, Z., Zhou, X., Zhang, C., 2013. A comprehensive analysis of Yanchi sedimentary strata changes since the Late Glacial in Hexi Corridor——paleoclimate evidence from a key position of summer monsoon northwest edge. Acta Geographica Sinica 68, 933–944. (in Chinese)]
[5] 申建梅, 张光辉, 聂振龙, 王金哲, 严明疆, 张俊牌, 瑞林, 2008.西北内陆高台盐池孢粉组合与古气候变化. 中国生态农业学报 16(2), 323–326. [Shen, J., Zhang, G., Nie, Z., Wang, J., Yan, M., Zhang, J., Guo, R., 2008. Characteristics of spore–pollen and ancient climate changes in inlands of Northwest China. Chinese Journal of Eco–Agriculture 16, 323–326. (in Chinese)]
3花海千年尺度气候变化
花海沉积物记录的千年尺度环境变化表现为,早全新世环境流域径流较大,流域性侵蚀及沉积过程较剧烈;中全新世有效湿度较高,晚全新世环境趋于干旱。这种水分条件的变化与早全新世较强的亚洲季风所带来的较多降水有关,从而增加了径流量和流域性的侵蚀量。这种全新世水分条件变化模式,也受到了中纬度西风带的影响。
[1]Li, Y.,Wang, N., Morrill, C., Anderson, D. M., Li, Z., Zhang, C., Zhou, X., 2012. Millennial–scale erosion rates in three inland drainage basins and their controlling factors since the Last Deglaciation, arid China. Palaeogeography, Palaeoclimatology, Palaeoecology 365, 263–275.
[2] Wang, N., Li, Z.,Li, Y.,Cheng, H., Huang, R., 2012. Younger Dryas event recorded by the mirabilite deposition in Huahai Lake, Hexi Corridor, NW China. Quaternary International 250, 93–99.
[3] Wang, N., Li, Z.,Li, Y.,Cheng, H., 2013. Millennial–scale environmental changes in the Asian monsoon margin during the Holocene, implicated by the lake evolution of Huahai Lake in the Hexi Corridor of northwest China. Quaternary International 313, 100–109.
[4] 胡刚, 王乃昂, 罗建育, 高顺尉, 李巧玲, 2001. 花海湖泊古风成砂的粒度特征及其环境意义. 沉积学报 19(4), 642–647. [Hu, G., Wang, N., Luo, J., Gao, S., Li, Q., 2001. The grain size characteristics of aeolian sand and its environmental significance. Acta Sedimentologica Sinica 19, 642–647. (in Chinese)]
[5] 胡刚, 王乃昂, 赵强, 程弘毅, 谌永生, 郭剑英, 2003. 花海湖泊特征时期的水量平衡. 冰川冻土 25(5), 485–490. [Hu, G., Wang, N., Zhao, Q., Cheng, H., Chen, Y., Guo, J., 2003. Water balance of Huahai Lake Basin during a special phase. Journal of Glaciology and Geocryology 25, 485–490. (in Chinese)]
4猪野泽气候变化周期
猪野泽湖泊沉积物古环境代用指标记录显示,该区域有明显的~256、~512、~1024年气候循环周期,这与典型亚洲夏季风区全新世千年尺度和百年尺度气候循环周期一致。同时,该区域湖泊沉积物中也记录了明显的北大西洋浮冰碎屑事件(Bond Events),这与该事件的全球性有关,体现了季风边缘区环境变化对全球尺度气候变化周期的响应。
[1]Li, Y.,Wang, N., Li, Z., Zhou, X., Zhang, C., 2012. Holocene climate cycles in northwest margin of Asian monsoon. Chinese Geographical Science 22, 450–461.
[2]李育, 李卓仑, 王乃昂, 2012. 蒸发和环流因素对湖泊演化的影响——河西走廊猪野泽不同位置全新世沉积物古环境意义探讨. 湖泊科学 24(3), 474–479. [Li, Y.,Li, Z., Wang, N., 2012. Impacts of evaporation and circulation on lake evolution: paleoenvironmental implications for Holocene sediments at different locations of Lake Zhuye, Hexi Corridor. Journal of Lake Sciences 24, 474–479. (in Chinese)]
[3] Chen, F., Zhu, Y., Li, J., Shi, Q., Jin, L., Wünemann, B., 2001. Abrupt Holocene changes of the Asian monsoon at millennial–and centennial–scales: Evidence from lake sediment document in Minqin Basin, NW China. Chinese Science Bulletin 46, 1942–1947.
[4] Chen, F., Wu, W., Holmes, J. A., Madsen, D. B., Zhu, Y., Jin, M., Oviatt, C. G., 2003. A mid–Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia China. Chinese Science Bulletin 48, 1401–1410.
[5] 靳立亚, 陈发虎, 朱艳, 2004. 西北干旱区湖泊沉积记录反映的全新世气候波动周期性变化. 海洋地质与第四纪地质 24(2), 101–108. [Jin, L., Chen, F., Zhu, Y., 2004. Holocene Climatic Periodicities Recorded from Lake Sediments in the/Arid–Semiarid Areas of Northwestern China. Marine Geology and Quaternary Geology 24, 101–108. (in Chinese)]
季风边缘区的湖泊沉积物中广泛存在一次中全新世干旱事件,但是关于这次事件的年代和机制还存在争议。根据猪野泽湖泊沉积物的岩性、年代和待用指标探索,这次干旱事件主要发生在~8.0-~7.0 cal kyr BP之间,其影响范围主要在石羊河中、下游地区,对石羊河上游地区影响较小,这次干旱事件可能主要受控于流域性水热配比变化及季风与西风互动。
[1] Chen, F., Zhu, Y., Li, J., Shi, Q., Jin, L., Wünemann, B., 2001. Abrupt Holocene changes of the Asian monsoon at millennial–and centennial–scales: Evidence from lake sediment document in Minqin Basin, NW China. Chinese Science Bulletin 46, 1942–1947.
[2] Chen, F., Wu, W., Holmes, J. A., Madsen, D. B., Zhu, Y., Jin, M., Oviatt, C. G., 2003. A mid–Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia China. Chinese Science Bulletin 48, 1401–1410.
[3] Chen, F., Cheng, B., Zhao, Y., Zhu, Y., Madsen, D. B., 2006. Holocene environmental change inferred from a high–resolution pollen record, Lake Zhuyeze, arid China. The Holocene 16, 675–684.
[4]Li, Y.,Wang, N., Li, Z., Zhang, H., 2011. Holocene palynological records and their responses to the controversies of climate system in the Shiyang River drainage basin. Chinese Science Bulletin 56, 535–546.
[5]李育, 王乃昂, 李卓仑, 张华安, 周雪花, 张成琦, 2012. 猪野泽中全新世干旱事件时空范围和机制. 地理科学 32(6), 731–738. [Li, Y.,Wang, N., Li, Z., Zhang, H., Zhou, X., Zhang, C., 2012. The spatial and time scales for the dry mid–Holocene event in Zhuye Lake. Scientia Geographica Sinica 32, 731–738. (in Chinese)]
猪野泽湖泊沉积物晚第四纪年代结果主要来自孢粉浓缩物、全样有机质、全样无机质、软体动物壳体AMS C和常规C测年,光释光测年也应用于部分湖泊沉积剖面。通过多种物质的测年物质和测年方法结果对比,猪野泽晚第四纪湖泊沉积物碳库效应较小,部分层位年代有倒置现象,年代混乱现象主要集中在晚冰期和早全新世地层中,这主要受湖泊再沉积作用影响。根据猪野泽东北岸古湖泊岸堤光释光及C测年年代结果,猪野泽全新世高湖面期主要存在于早、中全新世,晚全新世体现了干旱化趋势。古湖泊岸堤年代结果所显示的湖泊水位变化过程与湖泊沉积物指标研究一致。
[1]Li, Y.,Wang, N., Li, Z., Zhang, C., Zhou, X., 2012. Reworking effects in the Holocene Zhuye Lake sediments: A case study by pollen concentrates AMS C dating. Science China Earth Sciences 55, 1669–1678.
[2] Long, H., Lai, Z., Wang, N.,Li, Y.,2010. Holocene climate variations from Zhuyeze terminal lake records in EastAsian monsoon margin in arid northern China. Quaternary Research 74, 46–56.
[3] Long, H., Lai, Z., Fuchs, M., Zhang, J.,Li, Y.,2012. Timing of Late Quaternary palaeolake evolution in Tengger Desert of northern China and its possible forcing mechanisms. Global and Planetary Change 92, 119–129.
[4] Zhang, H.C., Peng, J., Ma, Y., Chen, G., Feng, Z., Li, B., Fan, H., Chang, F., Lei, G., Wünemann, B., 2004. Late Quaternary palaeolake levels in Tengger Desert, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 45–48.
[5] Zhang, H.C., Wünemann, B., Ma, Y.Z., Pachur, H.-J., Li, J.J., Qi, Y., Chen, G.J., Fang, H.B., 2002. Lake level and climate change between 40,000 and 18,000 14C years BP in Tengger Desert, NW China. Quaternary Research 58, 62– 72.
伴随着流域性千年尺度环境变化和古生态-古植被变化,猪野泽沉积物孢粉记录较好地反映了流域性植被的变化。但是猪野泽湖盆地形复杂,不同位置孢粉组合存在差异,湖盆西侧受冲积相花粉影响较大,中、东部花粉组合较好的反映了湖泊水动力充分混合后的花粉组合。总体来讲,早全新世上游乔木花粉含量较高,表现了较高的径流量和降水量,中全新世花粉组合较丰富、孢粉浓度达到最高,晚全新世湖泊花粉组合变化现实了干旱化趋势。猪野泽地区全新世孢粉谱与其他指标对应较好,可靠地记录了湖泊及流域的环境变化。
[1]Li, Y.,Wang, N., Morrill, C., Cheng, H., Long, H., Zhao, Q., 2009. Environmental change implied by the relationship between pollen assemblages and grain–size in NW Chinese lake sediments since the Late Glacial. Review of Palaeobotany and Palynology 154, 54–64.
[2]Li, Y.,Wang, N., Li, Z., Zhang, H., 2011. Holocene palynological records and their responses to the controversies of climate system in the Shiyang River drainage basin. Chinese Science Bulletin 56, 535–546.
[3] Chen, F., Cheng, B., Zhao, Y., Zhu, Y., Madsen, D. B., 2006. Holocene environmental change inferred from a high–resolution pollen record, Lake Zhuyeze, arid China. The Holocene 16, 675–684.
[4] Zhao, Y., Yu, Z., Chen, F., Li, J., 2008. Holocene vegetation and climate change from a lake sediment record in the Tengger Sandy Desert, northwest China. Journal of Arid Environments 72, 2054–2064.
[5] Zhu Y., Chen F., David M., 2002. The environmental signal of an early Holocene pollen record from the Shiyang River basin lake sediments, NW China. Chinese Science Bulletin 47, 267–273.
湖泊沉积物岩性、矿物及石英砂微形态也是反映湖泊演化过程的良好指标。猪野泽湖相沉积物以青灰色粉砂为主,部分层位夹杂褐色锈斑和黑色泥炭沉积层,湖相沉积层之间夹杂青灰色或黄褐色砂层,剖面顶部通常沉积了厚度不均的风成沉积物,这些岩性特征指示了湖泊水动力条件的变化过程以及区域的风沙活动。碳酸
盐类矿物是该区域主要的盐类矿物,其千年尺度盐类矿物演化过程,体现了盐湖演化的一般规律,与其他指标能形成良好对应。该区域沉积地层富含碳酸盐类矿物,从而形成了一个巨大的无机碳库。猪野泽地区砂层沉积物石英砂扫描电镜分析揭示了该区域砂层沉积物来源的多元化,既带有风成砂的特点,又经过水下环境的沉积,表明该区域砂层形成的复杂性。
[1]Li, Y.,Wang, N., Morrill, C., Cheng, H., Long, H., Zhao, Q., 2009. Environmental change implied by the relationship between pollen assemblages and grain–size in NW Chinese lake sediments since the Late Glacial. Review of Palaeobotany and Palynology 154, 54–64.
[2]Li, Y.,Wang, N., Li, Z., Zhou, X., Zhang, C., 2012. Holocene climate cycles in northwest margin of Asian monsoon. Chinese Geographical Science 22, 450–461.
[3]Li, Y.,Wang, N., Li, Z., Zhou, X., Zhang, C., Wang, Y., 2013. Carbonate formation and water level changes in a paleo–lake and its implication for carbon cycle and climate change, arid China. Frontiers of Earth Science 7, 487–500.
[4]Li, Y.,Wang, N., Li, Z., Zhang, C., Zhou, X., 2012. Reworking effects in the Holocene Zhuye Lake sediments: A case study by pollen concentrates AMS C dating. Science China Earth Sciences 55, 1669–1678.
[5]李育, 周雪花, 李卓仑, 王乃昂, 2013.基于扫描电镜分析的猪野泽全新世砂层成因探讨. 沉积学报 31(1), 149–156. [Li, Y.,Zhou, X., Li, Z., Wang., N., 2013. Formation of Holocene sand layers by SEM analyses in the Zhuye Lake sediments. Acta Sedimentologica Sinica 31, 149–156. (in Chinese)]
常用的湖泊沉积物
有机地球化学指标有总有机碳(TOC)、碳氮比率(C/N)和有机碳同位素(δCorg)。它们可以反映湖泊及流域的初始生产力和植被类型,也反映了有机质随沉积物沉积后的保存状况,是湖泊及流域生态环境和古气候、古环境变化信息的良好载体。猪野泽沉积物TOC与C/N变化趋势一致,高值指示了较高的流域生产力,δCorg与其他两种指标变化趋势相反,其偏负指示较高的有效湿度。猪野泽沉积物地球化学指标研究结果与其他待用指标结果形成了良好对应,体现了早全新世径流量及降水量较高,中全新世流域性初级生产力达到最大和晚全新世干旱化的特点。
[1]Li, Y.,Wang, N., Cheng, H., Long, H., Zhao, Q., 2009. Holocene environmental change in the marginal area of the Asian monsoon: A record from Zhuye Lake, NW China. Boreas 38, 349–361.
[2]Li, Y.,Zhou, X., Zhang, C., Li, Z., Wang, Y., Wang, N., 2014. Relationship between pollen assemblages and organic geochemical proxies and the response to climate change in the Zhuye Lake sediments. Sciences in Cold and Arid Regions.
[3]李育, 王乃昂, 李卓仑, 程弘毅, 2011.河西猪野泽沉积物有机地化指标之间的关系及古环境意义. 冰川冻土 33(2), 334–341. [Li, Y.,Wang, N., Li, Z., Cheng, H., 2011. The relationships among Organic Geochemical Proxies and their palaeoenvironmental significances in the Zhuye Lake Sediments. Journal of Glaciology and Geocryology 33, 334–341. (in Chinese)]
[4]李育, 周雪花, 李卓仑, 王乃昂, 2013. 猪野泽沉积物有机地球化学指标与花粉组合的关系及其对环境变化的响应. 中国沙漠 33(1), 87–93. [Li, Y.,Zhou, X., Li, Z., Wang, N., 2013. Relationship between pollen assemblages and organic geochemical proxies and the response to climate change in the Zhuye Lake sediments. Journal of Desert Research 33, 87–93. (in Chinese)]
[5] 隆浩, 王乃昂,李育, 马海州, 赵强, 程弘毅, 黄银洲, 2007. 猪野泽记录的季风边缘区全新世中期气候环境演化历史. 第四纪研究 27(3), 371–381. [Long, H., Wang, N.,Li, Y.,Ma, H., Zhao, Q., Cheng, H., Huang, Y., 2007. Mid–Holocene climate variations from lake records of the East Asian monsoon margin: A multi–proxy and geomorphological study. Quaternary Sciences 27, 371–381. (in Chinese)]
古湖泊岸堤高程测量和OSL及C测年可更好地了解中国西北地区晚第四纪高湖面的形成和演化。经实地调查表明,猪野泽东北缘有9级古湖泊岸堤和一级阶地,这些古湖泊岸堤的年代结果体现了猪野泽从早、中全新世到晚全新世湖泊退缩的过程。全新世千年尺度上OSL及C测年虽然存在差异,但共同现实了早、中全新世的高湖面。MIS3和MIS5阶段高湖面的情况,两种方法结果存在差异,有待进一步研究。
[1]Li, Y.,Wang, N., Li, Z., Zhang, C., Zhou, X., 2012. Reworking effects in the Holocene Zhuye Lake sediments: A case study by pollen concentrates AMS C dating. Science China Earth Sciences 55, 1669–1678.
[2] Wang, N., Li, Z., Cheng, H.,Li, Y.,Huang, Y., 2011. High lake levels on Alashan Plateau during the Late Quaternary. Chinese Science Bulletin 56, 1799–1808.
[3] Long, H., Lai, Z., Fuchs, M., Zhang, J.,Li, Y.,2012. Timing of Late Quaternary palaeolake evolution in Tengger Desert of northern China and its possible forcing mechanisms. Global and Planetary Change 92, 119–129.
[4] Zhang, H.C., Wünemann, B., Ma, Y.Z., Pachur, H.-J., Li, J.J., Qi, Y., Chen, G.J., Fang, H.B., 2002. Lake level and climate change between 40,000 and 18,000 14C years BP in Tengger Desert, NW China. Quaternary Research 58, 62– 72.
[5] Zhang, H.C., Peng, J., Ma, Y., Chen, G., Feng, Z., Li, B., Fan, H., Chang, F., Lei, G., Wünemann, B., 2004. Late Quaternary palaeolake levels in Tengger Desert, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 45–48.
千年尺度湖泊演化除了受大气环流特征的影响外,蒸发也起了重要作用。湖泊蒸发量主要与相对湿度、温度、水汽压和日照时间有关。根据猪野泽地区现代观测结果,温度和相对湿度的变化可能在全新世千年尺度湖泊水位的变化中起重要作用。进一步研究显示,猪野泽湖泊水位变化受控因素较多,流域及湖面降水是最主要的控制因素,但是流域性蒸散发和湖面蒸发也会影响千年尺度湖泊面积变化。
[1]Li, Y.,Wang, N., Li, Z., Ma, N., Zhou, X., Zhang, C., 2013. Lake evaporation: A possible factor affecting lake level changes tested by modern observational data in arid and semi–arid China. Journal of Geographical Sciences 23, 123–135.
[2]李育, 李卓仑, 王乃昂, 2012. 蒸发和环流因素对湖泊演化的影响——河西走廊猪野泽不同位置全新世沉积物古环境意义探讨. 湖泊科学 24(3), 474–479. [Li, Y.,Li, Z., Wang, N., 2012. Impacts of evaporation and circulation on lake evolution: paleoenvironmental implications for Holocene sediments at different locations of Lake Zhuye, Hexi Corridor. Journal of Lake Sciences 24, 474–479. (in Chinese)]
[3] Zhao, Q., Li, X., Wang, N., 2008. Lacustrine strata sedimentology and lake–level history in ancient Zhuyeze Lake since the Last Deglaciation. Frontiers of Earth Science in China 2, 199–208.
[4] 郭晓寅, 陈发虎, 施祺, 2000. GIS技术和水热平衡模型在古湖泊水文重建研究中的应用——以石羊河流域为例. 地理科学 20(5), 422–426. [Guo, X., Chen, F., Shi, Q., 2000. The application of GIS and water and energy budget to the study on the water rebuilding of Paleo–lake——a case in Shiyang River drainage. Scientia Geographica Sinica 20, 422–426. (in Chinese)]
[5] 颉耀文, 王君婷, 2006.
基于TM影像和DEM的白碱湖湖面变化模拟. 遥感技术与应用 21(4), 284–287. [Xie, Y., Wang, J., 2006. A Study on the changes of Baijian Lake based on TM image and DEM. Remote Sensing Technology and Application 21, 284–287. (in Chinese)]
气候变化的现代过程是研究古气候变化的基础。亚洲季风边缘区受到季风与西风气流的双重影响,其古气候变化体现出了一定的复杂性,通过该区域气候现代过程的研究,短时间尺度上季风-西风相互作用明显,而且这种短尺度的联系可以推测该区域长时间尺度气候变化中两大气候系统的相互作用。
[1]Li, Y.,Wang, N., Chen, H., Li, Z., Zhou, X., Zhang, C., 2012. Tracking millennial–scale climate change by analysis of the modern summer precipitation in the marginal regions of the Asian monsoon. Journal of Asian Earth Sciences 58, 78–87.
[2]Li, Y.,Wang, N., Li, Z., Ma, N., Zhou, X., Zhang, C., 2013. Lake evaporation: A possible factor affecting lake level changes tested by modern observational data in arid and semi–arid China. Journal of Geographical Sciences 23, 123–135.
[3] Li, Z., Wang, N.,Li, Y.,Zhang, Z., Li, M., Dong, C., Huang, R., 2013. Runoff simulations using water and energy balance equations in the lower reaches of the Heihe River, northwest China. Environmental Earth Sciences 70, 1–12.
[4]李育, 李卓仑, 王乃昂, 2012.蒸发和环流因素对湖泊演化的影响——河西走廊猪野泽不同位置全新世沉积物古环境意义探讨. 湖泊科学 24(3), 474–479. [Li, Y.,Li, Z., Wang, N., 2012. Impacts of evaporation and circulation on lake evolution: paleoenvironmental implications for Holocene sediments at different locations of Lake Zhuye, Hexi Corridor. Journal of Lake Sciences 24, 474–479. (in Chinese)]
[5] 李卓仑, 王乃昂,李育, 来婷婷, 路俊伟, 2012.
近50年来黑河出山径流对气候变化的响应. 水土保持通报 32(2), 7–11. [Li, Z., Wang, N.,Li, Y.,Lai, T., Lu, J., 2012. Variations of runoff in responding to climate change in mountainous areas of Heihe River during last 50 years. Bulletin of Soil and Water Conservation 32, 7–11. (in Chinese)]
13季风边缘区湖泊演化模拟
古气候模拟与湖泊所记录的古气候信息提取是研究过去全球变化的两种重要手段。模拟方法侧重于古气候变化机制研究,而湖泊记录主要用于古气候重建,将二者结合起来灵活运用是理解古气候变化和长尺度水循环过程及机制的重要途径。根据CCSM 3.0古气候模式、湖泊水量&能量平衡模型结果,季风边缘区末次盛冰期以来的湖泊演化过程与模拟结果匹配较好。猪野泽湖泊记录是季风边缘区的典型记录,其与模拟结果匹配较好,模拟方法进一步解释了猪野泽千年尺度演化的机制问题。
[1]Li, Y.,Morrill, C., 2010. Multiple factors causing Holocene lake–level change in monsoonal and arid central Asia as identified by model experiments. Climate dynamics 35, 1119–1132.
[2]Li, Y.,Wang, N., Chen, H., Li, Z., Zhou, X., Zhang, C., 2012. Tracking millennial–scale climate change by analysis of the modern summer precipitation in the marginal regions of the Asian monsoon. Journal of Asian Earth Sciences 58, 78–87.
[3]Li, Y.,Morrill, C., 2013. Lake levels in Asia at the Last Glacial Maximum as indicators of hydrologic sensitivity to greenhouse gas concentrations. Quaternary Science Reviews 60, 1–12.
[4]Li, Y.,Wang, N., Li, Z., Ma, N., Zhou, X., Zhang, C., 2013. Lake evaporation: A possible factor affecting lake level changes tested by modern observational data in arid and semi–arid China. Journal of Geographical Sciences 23, 123–135.
[5]李育, 李卓仑, 王乃昂, 2012.蒸发和环流因素对湖泊演化的影响——河西走廊猪野泽不同位置全新世沉积物古环境意义探讨. 湖泊科学 24(3), 474–479. [Li, Y.,Li, Z., Wang, N., 2012. Impacts of evaporation and circulation on lake evolution: paleoenvironmental implications for Holocene sediments at different locations of Lake Zhuye, Hexi Corridor. Journal of Lake Sciences 24, 474–479. (in Chinese)]