热流道是通过加热的办法来保证
流道和
浇口的塑料保持
熔融状态,热流道系统一般由热喷嘴、
分流板、
温控箱和附件等几部分组成,热喷嘴一般包括两种:开放式热喷嘴和
针阀式热喷嘴,由于热喷嘴形式直接决定热流道系统选用和模具的制造,因而常相应的将热流道系统分成开放式热流道系统和
针阀式热流道系统。
简介
很多朋友可能都会对“热流道系统”这个词有些陌生,但行内人都无一不晓。
热流道在生产成型上面起着非常大的作用。热流道系统是一个组合体。不是指单个产品。它其中包括了热咀,
流道板,温控器,
分流板等。这些一起就组成了热流道系统。作为
注塑模具系统的一个常用部件,是通过加热的办法来保证流道和
浇口的塑料保持熔融状态。由于在流道附近或中心设有
加热棒和
加热圈,从
注塑机喷嘴出口到浇口的整个流道都处于高温状态,使流道中的塑料保持熔融,停机后一般不需要打开流道取出凝料,再开机时只需加热流道到所需温度即可。因此,热流道工艺有时称为热集流管系统,或者称为无流道模塑
分类
开放式
开放式结构简单、对材料的局限性较高,易出现
拉丝和泄露,表面质量差,在国外的高精密模具中应用较少,同一副模具可和不同厂家的
针阀式混用。很多公司能自己制造。
针阀式
针阀式
热流道节省材料,塑件表面美观,同时内部质量紧密、强度高。世界上有两大类针阀式热流道(根据注射原理):
气缸式和弹簧式。气缸式依*控制器和
时序控制器控制气缸推动针阀的关闭,结构较复杂,但本身设计简单。气缸式因为其结构的特点决定
模具精度要高,同时调试和维护都比较复杂,弹簧式最大特点,依靠弹簧和注射压力 的平衡控制
针阀开关,装配调试和维护简单,模具精度不高,广泛应用在家电、汽车饰件、精密多腔模具中。弹簧式与
气缸的差别在于不能时序控制,不能很好解决
熔接痕的问题。
优势
成形超大件制品
须以
热浇道才能使塑胶流动~例如:汽车内衬板、
平衡杆、…等,需要较多处同时进浇。
偏离射出成型机之中心的侧向进浇
以热浇道方式进浇将可使模具的构造简单,成形容易、加快成形速度、减少成形时的料头……一举数得。
(1)三板方式在每次射出时,沉重的母模板须在导梢上滑动,即使新品期间堪用,模具寿命也不长。
(2)三板方式在每次顶出时,从
模子取出竖浇道的移动量大于从模子取出
成形品所必要的模板移动量。
由顶出侧进浇时时使用
可免除太长的料头所产生的问题,例如:模具行程可减少、节省料头残留量、成形容易、不缩水、无
流痕……等现象。
对于一些大型或是允许由中心进浇之产品
(1) 可以用
热浇道来取代
三板模,以避免不必要的成形机模板的运动。
(2) 在三板模使用之方式中,须移动母模板而取出料头,若用热浇道
成形法,开模运动可缩短卸下料头所必要的移动,因此可增加
模子厚度,传统方式本须用大成形机方可生产时,使用热浇道之后可改用小成形机。
较难成形之物件
例如:高黏度、低黏性、高成形温度……、热浇道系统可解决诸此问题。
具体的实例:金属粉末射出、陶瓷粉末射出、塑胶磁铁之射出、塑胶轴承之射出、
热可塑性橡胶(
TPE)……等等。
(1)料头容易取出,并且可减少料头取出之行程。
(2)射料时之料流动较平均,又可分别控制各射出点的操作条件,射出较容易。
(3)节省材料费用。
节省费用
节省材枓方面:
简单的例子:倘若冷料头占废料率的68%而言,(在制造时1公斤的材料只能生产320 g的产品,而其馀的680 g为冷料头)。
(2)尽管冷料头尚可回收,不过基于人力的因素、回收料之混合比例……等等之因素之影响,为了维持正常的运转,必须积存有一些冷料头,因而造成资金的滞留。
倘若以材料费用100元/公斤,其积存的废料为500公斤时,每天所需积压的资金将高达500×0.68×100=34000元,因此其在利息上的损失约达每天200元左右,长期而言,金额非常可观。
高速射出成形时
高速射出成形不只提高成形效率,如杯子、容器……等肉厚薄之成形所不可缺乏的。
于使用层模(stack mold)时
对于一些浅薄的、数量大的产品,例如:CD外壳、小颗粒产品,只需增加15%的
锁模力,以相同的射出时间,即可增加80%的产量。
环保与效率问题
由于
热浇道是不产生“垃圾”,因此无所谓处理“垃圾”的问题。
所谓的“垃圾”意味着:
(1)资源的浪费:分析塑胶射出成形的过程中──
(2)不占储存料头空间,无绞碎之噪音及变质的问题。
由于塑胶种类繁多,加上多种色泽不一,因此往往因积存料头,必须在寸土寸金的土地上占有不少空间,同时积压了不少资金。
同时因绞碎必须产生噪音影响安宁,较差的工作环境影响工作士气。
模具业
由于时代的巨轮不断的、快速的,而且很残酷的往前快速迈进,加上我国内的几项福利政策业已开始:“全民健保”、“国民年金”……等相关实施,不只使得以人力为主的模具业成本大增,更糟糕的是人力市场难求,模具业普遍缺人的现象……令人心忧!因此在有限的人力资源之下,如何提高您的模具利润以应付日益增加的成本,乃是大家面临的主要问题,提高精密度,自动化制模……,固然是一种很好办法,不过需要投入大量资金购买设备、训练人员……,针对以上情况,最简单,最容易达成的方式,莫过于对“
热浇道之使用”做透彻的了解。
特性
射出成形之加工就是(
塑化)→(流动)→(成形)→(固化结晶化)的工程。
可塑化
即玻璃状态、高弹性状态(橡胶态)、
粘流态(可
塑化状态)、分解状态,如图示:
玻璃状态:0~T1,分子在冻结状态,硬且脆,遇压力则易破裂。
粘流态(可塑化状态):T2~T3,可随意加工成形。
分解状态:T3,塑胶开始裂解,出现气体分解物,甚至达烧焦状态。
成形条件
(注)以下为一般形塑料之成形条件
流动性
因此在这种非牛顿流动中,压力增大则流动抵抗减小。因此射出成形时,虽然
浇口相当狭小,但却很容易填充于模穴内,至于
牛顿流体,再加分类有两种,如图:
射出成形是将塑胶溶液采用高速度使其产生变形的一种加工法,因塑胶溶液有压缩性,在高速的流动下,容易引起弹性的压力变动。这个现象,当
流动阻力有急速变化时,即可看出这种弹性的压力变动变生后,流体前端的扩散方向极为混乱不安定。但是采用高速填充时,塑胶溶液又像是非压缩性的现象。这种弹性的压力变动(不安定的脉动)是因何而起的?以下分析如图所示:
【当塑胶溶液之流动类似
层流状态时,即模穴在正常且安定的状态下填充】
在图中,富有压缩性的塑胶溶液以螺旋状的弹簧表示,叙想在弹簧施加压力,使往管子中央移动时,当用一样的速度使弹簧由左往右移动的活动,这是理想的层流状态,由于射出压力与阻力在平衡状态时,弹簧的移动很平滑。【如C】
可是在某些情况,必需以急速填充时,射出压力及速度也就异常的增高。因此富有弹性的塑胶溶液(弹簧),头一瞬间时承受过程的压缩,第二瞬间时引起强大的阻力,其原因是压力的起伏变动和流动体前端的乱流所发生的,这种流动状况称为弹性乱流。
从分子的结构观察,结晶性塑胶─线状高分子,依样其化学构造,有些分子的一部份,乃以有规则地集合,将其称为结晶性塑胶。不是所有的分子都变成此状态,依据冷却条件在重量比有40~80%程度变成结晶状态。此程度称为“
结晶度”。结晶之内都是称为Lamella的分子链弯曲、折叠,而未进入产生单位结晶之结晶部分的分子链存在于Lamella或
球晶之间,产生非结晶部分。非结晶性塑胶……与
结晶性塑胶不同,分子无法有规则地集合。这是由于形成高分子链之
原子团太大、架桥妨碍结晶。
从容积变化的观察结果,亦可将
热可塑性塑胶分为两大类,一种是非
结晶性塑胶,另一种是结晶性塑胶。对于结晶性与非结晶性之分类,在表中有关各种塑胶的习性已有注明。对于其容积与温度间之变化,我们可由以下例子来做更进一步的了解。例如:PS(非结晶性塑胶之代表)从20℃加热到200℃时约膨胀8.3%,以密度而言,从0.97 cm/g增大到1.012 cm/g(结晶性塑胶之代表)在同条件下有下列的变化:
20℃容积:1.03 cm/g
200℃的容积:1.33 cm/g
容积增加率:29%
已溶融的非晶性聚合物,采用所使用的射出成形机,可做大幅度的压缩。因条件而异,过剩的溶融体也可强制填充于模穴内,在这种条件下做出的
成形品,残留着很大的
内应力而固化。对成形品的性能有很大的影响。它会在脱模的瞬间被破坏,稍受到外力或因化学药品的作用也很容易受破坏。
结晶性塑胶,因加热使结晶完全融解,溶融体成了非晶状态,其动作与非结晶性聚合物一样。值得注意的是压力变高时,从
结晶质到非结晶质的转移温度也会提高。结晶性塑胶成形时,在成形品的品质上有一点很重要,即聚合物在非结晶状态时必需要完成成形的动作。这件事,特别是对保压期间而言,保压中的变形即是因流动而引起的。
结晶性塑胶的溶融体急速冷却后,
成形品的某些部份,其
再结晶化受到妨碍,再结晶化的现象无法瞬间完成,而随时继续进行,密度和结晶化程度之间有直接的关系,结晶化程度高,则密度提高。相反地,结晶化程度低,则密度降低,因急激的冷却,而使再结晶化受到妨碍的部份,因温度、时间因素的差异下,或多或少继续进行后结晶化。后结晶化继续进行,直到回复原本此部份的密度为止。因此可以了解后结晶化与后收缩是相关连的,后结晶化和后收缩也是造成成形品弯曲变形和尺寸变化(成形品变小)的原因。
模穴表面温度高的话,成形收缩起初很大,热处理时却少有变化。因此,在很高的模具表面温度下做出的
成形品,虽然在高温下使用,但其尺寸
安定性却很好。因此,决定
结晶性塑胶的模穴尺寸时,必需要考虑后结晶、后收缩的关系,而重要的是,模穴表面温度从成形开始就要正确地掌握。当然,要使模穴的表面温度完全无温度差是不可能的,但可使用有效的温度控制系统,尽量减少温度差。
热流道系统保养:
热流道系统普遍应用于塑料模、注射成型模、多型腔模具行业,
热流道模具在使用中定期进行热流道元件的预防性保养是十分重要的,这项工作包括电气测试、密封元件和连接导线的检查以及元件脏物的清洗工作等,保养要点如下:
1、如果模具被长时间闲置,要采取措施防止加热器受潮。
2、把模具安放在干燥、通风的地方。
3、清除所有的水分和油污,涂上防腐剂以防生锈。
4、在批量生产完成后,清除模具和喷嘴上所有不必要的原料和其它杂物。
5、再次生产时,设置热喷嘴温度至高于材料成型温度或熔融温度10摄氏度左右,检查热流道系统的整体状况,再根据正确的顺序开机操作。
优点
热流道模具在当今世界各工业发达国家和地区均得到极为广泛的应用。这主要因为热流道模具拥有如下显著特点:
成型周期
因没有浇道系统冷却时间的限制,制件成型固化后便可及时顶出。许多用
热流道模具生产的薄壁零件
成型周期可在5秒钟以下。
节省塑料原料
在纯
热流道模具中因没有冷浇道,所以无生产废料。这对于塑料价格贵的应用项目意义尤其重大。事实上,国际上主要的
热流道生产厂商均在世界上石油及塑料原料价格昂贵的年代得到了迅猛的发展。因为热流道技术是减少费料降低材料费的有效途径。
提高产品质量
在
热流道模具成型过程中,塑料熔体温度在
流道系统里得到准确地控制。塑料可以更为均匀一致的状态流入各
模腔,其结果是品质一致的零件。
热流道成型的零件
浇口质量好,脱模后
残余应力低,零件变形小。所以市场上很多高质量的产品均由热流道模具生产。 如人们熟悉的MOTOROLA手机,HP打印机,
DELL笔记本电脑里的许多塑料零件均用热流道模具制作。
利于生产自动化
制件经
热流道模具成型后即为成品,无需修剪
浇口及回收加工冷浇道等工序。有利于
生产自动化。国外很多产品生产厂家均将
热流道与自动化结合起来以大幅度地提高生产效率。
扩大应用笵围
许多先进的塑料成型工艺是在
热流道技术基础上发展起来的。如PET预成型制作,在模具中多色共注,多种材料共注工艺,STACK MOLD等。
缺点
尽管与冷
流道模具相比,
热流道模具有许多显著的优点,但模具用户亦需要了解
热流道模具的缺点。概括起来有以下几点。
模具成本上升
热流道元件价格比较贵,
热流道模具成本可能会大幅度增高。如果零件产量小,模具工具成本比例高,经济上不划算。对许多发展中国家的模具用户,热流道系统价格贵是影响热流道模具广泛使用的主要问题之一。
设备要求高
热
流道模具需要精密加工机械作保证。热流道系统与模具的集成与配合要求极为严格,否则模具在生产过程中会出现很多严重问题。 如塑料密封不好导致塑料溢出损坏
热流道元件中断生产,喷嘴
镶件与
浇口相对位置不好导致制品质量严重下降等。
操作维修复杂
与冷
流道模具相比,
热流道模具操作维修复杂。如使用操作不当极易损坏
热流道零件,使生产无法进行,造成巨大经济损失。对于热流道模具的新用户,需要较长时间来积累使用经验。
系统组成
尽管世界上有许多
热流道生产厂商和多种热流道产品系列,但一个典型的热流道系统均由如下几大部分组成:
4. 辅助零件
将在以后系列文章深入讨论这些零件的种类与应用。
技术关键
一个成功的
热流道模具应用项目需要多个环节予以保障。其中最重要的有两个技术因素。一是塑料温度的控制,二是塑料流动的控制。
塑料温度的控制
在
热流道模具应用中塑料温度的控制极为重要。许多生产过程中出现的加工及产品质量
问题直接来源于热流道系统温度控制的不好。 如使用
热针式
浇口方法
注塑成型时产品浇口质量差问题,阀式浇口方法成型时
阀针关闭困难问题,多型腔模具中的零件填充时间及质量不一致问题等。如果可能应尽量选择具备多区域分别控温的热流道系统,以增加使用的灵活性及应变能力。
塑料流动的控制
塑料在热流道系统中要流动平衡。
浇口要同时打开使塑料同步填充各型腔。对于零件重量相差悬殊的FAMILY MOLD要进行浇道尺寸设计平衡。 否则就会出现有的零件充模保压不够,有的零件却充模保压过度,
飞边过大质量差等问题。
热流道浇道尺寸设计要合理。尺寸太小充模
压力损失过大。尺寸太大则热流道体积过大,塑料在热流道系统中停留时间过长, 损坏材料性能而导致零件成型后不能满足使用要求。世界上已经有专门帮助用户进行最佳流道设计的CAE软件如MOLDCAE。
应用范围
塑料材料种类
热流道模具已被成功地用于加工各种塑料材料。如PP,PE,PS,ABS,
PBT,PA,
PSU,PC,POM,
LCP,PVC,PET,PMMA,PEI,ABS/PC等。 任何可以用冷
流道模具加工的塑料材料都可以用
热流道模具加工。
因此对于塑料的特性,就格外重要了。例如:溶解温度、压力、黏度、比热……等都必须予以重视。由于塑料之领域非常广阔,于此无法深入其间,不过我们将针对其常识部份加以说明。
塑胶之所以能够成形加工,是由于它在温度与压力的作用下产生变形,依受热的温度不同,可分为四种状态,
玻璃状态:0~T1,分子在冻结状态,硬且脆,遇压力则易破裂。
高弹性状态(橡胶态)、:T1~T2,因外力可变形,未达溶化状态不易成形。
粘流态(可塑化状态):T2~T3,可随意加工成形。
分解状态:T3,塑胶开始裂解,出现气体分解物,甚至达烧焦状态。
2.成形条件:
(注)以下为一般形塑料之成形条件
对于每一种不同塑料,其相对的成形区域或有不同,不过其过程分析皆相同。因此对于优秀的模具设计者而言,应确实了解每一种塑料之成形区域及加工特性。
3.熔化塑胶的流动性
一般的流体(例如:水、油……)其流动状态,皆依照
牛顿定义进行。而塑胶熔液看似普通的流体,其实乃是
非牛顿流体。例如:在
牛顿流体中,虽然剪断应力有变化,但其粘度却不变。而塑胶熔液,当剪断应力发生变化时,粘度也有明显的变化产生。例如:在牛顿流体中,压力从1增加到了10的时候,则流出量增加了10倍。以塑胶熔液来做同样的实验,当压力从1增加到10,其流出量可能增加了100倍,或500倍,甚至1000倍(依照不同的塑胶而定)。
设计制品之初即应选择所用塑料,但大都未将模具并入考虑。但可能的话,所选用的材料应使模具之制造简单才好。
成形收缩率小者(PS、ABS、PC)的尺寸精度较易达成。而成形收缩率大者(PP、PE、POM)较难做到尺寸精度(模具的公差为
成形品公差之1/6)。
流动时黏度比较大者(ABS等),溶液较不易流入缝隙中,但黏度小者(如PA、POM)即使间隙很小溶液亦易于进入。
成形时之温度较低者(PS等)较易成形且成形周期亦快,但成形温度高者(PC)则较慢。
成形时不易变质或
分解者(PS、PE、PP等),量产时不易引起品质不稳的不良品,但成形时易发生变质或分解者,若不严格要求成形条件(模具可以精密控制成形条件)则无法量产。此在
热浇道之情形下问题尤其严重。