直三棱柱
立体几何名词
是各个侧面的高相等,底面是三角形,上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直于两底面的棱柱。上下表面三角形可以是任意三角形正三棱柱是直三棱柱的特殊情况,即上下面是正三角形
定义
直三棱柱是一个子概念,可以从最开始的概念——棱柱说起。
棱柱:一般的,有两个面相互平行,其余各面都是四边形,并且相邻两个侧面的交线相互平行的多面体叫做棱柱。
再说直棱柱:侧面和底面互相垂直的棱柱叫做直棱柱。
最后是正三棱柱:三条侧棱皆平行,上表面和下表面是平行且全等的正三角形。正棱柱是侧棱都垂直于底面,且底面是正多边形的棱柱。
特别注意:底面为正多边形,侧棱垂直于底面,但是侧棱和底面边长不一定相等。
所以说,直三棱柱是很特殊的棱柱,正因为特殊所以是数学上性质比较好研究的。类似于正方形是最特殊的四边形一样。右边的图非常直观,就是高中数学课本上最常见的直三棱柱。
参考资料
最新修订时间:2023-07-03 08:05
目录
概述
参考资料