纳什均衡
博弈论中一种解的概念
纳什均衡是博弈论中一种解的概念,它是指满足下面性质的策略组合:任何一位玩家在此策略组合下单方面改变自己的策略(其他玩家策略不变)都不会提高自身的收益。
简介
纳什均衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果任意一位参与者在其他所有参与者的策略确定的情况下,其选择的策略是最优的,那么这个组合就被定义为纳什均衡。
一个策略组合被称为纳什均衡,当每个博弈者的均衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。
历史背景
关于纳什均衡的普遍意义和存在性定理的证明等奠定非合作博弈理论发展基础的重要成果,是约翰·纳什在普林斯顿大学攻读博士学位时完成的。实际上,博弈论的研究起始于1944年约翰·冯·诺依曼(Von Neumann)和奥斯卡·摩根斯特恩(Oscar Morgenstern)合著的《博弈论和经济行为》。然而却是纳什首先用严密的数学语言和简明的文字准确地定义了纳什均衡这个概念,并在包含“混合策略(mixed strategies)”的情况下,证明了纳什均衡在n人有限博弈中的普遍存在性,从而开创了与诺依曼和摩根斯坦框架路线均完全不同的“非合作博弈(Non-cooperative Game)”理论,进而对“合作博弈(Cooperative Game)”和“非合作博弈”做了明确的区分和定义。阿尔伯特·塔克(Albert tucker)教授评价其论文,“这是对博弈理论的高度原创性和重要的贡献。它发展了本身很有意义的n人有限非合作博弈的概念和性质。并且它很可能开拓出许多在两人零和问题以外的,至今尚未涉及的问题。在概念和方法两方面,该论文都是作者的独立创造。”
分类
纳什均衡可以分成两类:“纯策略纳什均衡”和“混合策略纳什均衡”。
要说明纯策略纳什均衡和混合策略纳什均衡,要先说明纯策略和混合策略。
所谓纯策略是提供给玩家要如何进行博弈的一个完整的定义。特别地是,纯策略决定在任何一种情况下要做的移动。策略集合是由玩家能够施行的纯策略所组成的集合。而混合策略是对每个纯策略分配一个概率而形成的策略。混合策略允许玩家随机选择一个纯策略。混合策略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现收益最优。因为概率是连续的,所以即使策略集合是有限的,也会有无限多个混合策略。
当然,严格来说,每个纯策略都是一个“退化”的混合策略,某一特定纯策略的概率为1,其他的则为0。
经典案例
囚徒困境
(1950年,数学家塔克任斯坦福大学客座教授,在给一些心理学家作讲演时,讲到两个囚犯的故事。)
假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌疑人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。
关于案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。但是由于两人处于隔离的情况,首先应该是从心理学的角度来看,当事双方都会怀疑对方会出卖自己以求自保、其次才是亚当·斯密的理论,假设每个人都是“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如他坦白,如果我抵赖,得坐10年监狱,如果我坦白最多才8年;假如他要是抵赖,如果我也抵赖,我就会被判一年,如果我坦白就可以被释放,而他会坐10年牢。综合以上几种情况考虑,不管他坦白与否,对我而言都是坦白了划算。两个人都会动这样的脑筋,最终,两个人都选择了坦白,结果都被判8年刑期。
基于经济学中“理性的经济人”的前提假设,两个囚犯符合自己利益的选择是坦白招供,原本对双方都有利的策略不招供从而均被判处一年就不会出现。这样两人都选择坦白的策略以及因此被判8年的结局,纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战:按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。但是我们可以从“纳什均衡”中引出“看不见的手”原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。
硬币正反
你的朋友提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”
每一种游戏依具其规则的不同会存在两种纳什均衡,一种是纯策略纳什均衡,也就是说玩家都能够采取固定的策略(比如一直出正面或者一直出反面),使得每人都赚得最多或亏得最少;或者是混合策略纳什均衡,而在这个游戏中,便应该采用混合策略纳什均衡。
假设我们出正面的概率是x,反面的概率是1-x,朋友出正面的概率是y,反面的概率是1-y。为了使利益最大化,应该在对手出什么的时候我们的收益都相等(不然在这个游戏中,对方可以改变正反面出现的概率让我们的期望收入减少),由此列出方程就是
解方程得y=3/8。
同样,朋友的收益,列方程
解得x也等于3/8,而朋友每次的期望收益则是元。这告诉我们,在双方都采取最优策略的情况下,平均每次朋友赢1/8元。
其实只要朋友采取了(3/8,5/8)这个方案,不论你再采用什么方案,都是不能改变局面的。
重要影响
纳什均衡理论奠定了现代主流博弈理论和经济理论的根本基础,正如克瑞普斯(Kreps,1990)在《博弈论和经济建模》一书的引言中所说,“在过去的一二十年内,经济学在方法论以及语言、概念等方面,经历了一场温和的革命,非合作博弈理论已经成为范式的中心……在经济学或者与经济学原理相关的金融、会计、营销和政治科学等学科中,现在人们已经很难找到不懂纳什均衡能够‘消费’近期文献的领域。”纳什均衡的重要影响可以概括为以下六个方面
1.改变了经济学的体系和结构。非合作博弈论的概念、内容、模型和分析工具等,均已渗透到微观经济学宏观经济学劳动经济学国际经济学环境经济学等经济学科的绝大部分学科领域,改变了这些学科领域的内容和结构,成为这些学科领域的基本研究范式和理论分析工具,从而改变了原有经济学理论体系中各分支学科的内涵。
2.扩展了经济学研究经济问题的范围。原有经济学缺乏将不确定性因素、变动环境因素以及经济个体之间的交互作用模式化的有效办法,因而不能进行微观层次经济问题的解剖分析。纳什均衡及相关模型分析方法,包括扩展型博弈法、逆推归纳法、子博弈完美纳什均衡等概念方法,为经济学家们提供了深入的分析工具。
3.加强了经济学研究的深度。纳什均衡理论不回避经济个体之间直接的交互作用,不满足于对经济个体之间复杂经济关系的简单化处理,分析问题时不只停留在宏观层面上而是深入分析表象背后深层次的原因和规律,强调从微观个体行为规律的角度发现问题的根源,因而可以更深刻准确地理解和解释经济问题。
4.形成了基于经典博弈的研究范式体系。即可以将各种问题或经济关系,按照经典博弈的类型或特征进行分类,并根据相应的经典博弈的分析方法和模型进行研究,将一个领域所取得的经验方便地移植到另一个领域。
5.扩大和加强了经济学与其他社会科学、自然科学的联系。纳什均衡之所以伟大,就因为它普通,而且普通到几乎无处不在。纳什均衡理论既适用于人类的行为规律,也适合于人类以外的其他生物的生存、运动和发展的规律。纳什均衡和博弈论的桥梁作用,使经济学与其他社会科学、自然科学的联系更加紧密,形成了经济学与其他学科相互促进的良性循环。
6.改变了经济学的语言和表达方法。在进化博弈论方面相当有造诣的日本经济学家神取道宏(Kandori Michihiro,1997)对保罗·萨缪尔森(Paul Samuelson)的名言“你甚至可以使一只鹦鹉变成一个训练有素的经济学家,因为它必须学习的只有两个词,那就是‘供给’和‘需求’”,曾做过一个幽默的引申,他说,“现在这只鹦鹉需要再学两个词,那就是‘纳什均衡’”。
参考资料
最新修订时间:2024-10-03 17:45
目录
概述
简介
历史背景
参考资料