耐磨铸铁是指高硬度、在一定的磨损条件下具有高耐磨性的铸铁。其组织具有均匀的高硬度和耐磨性。
铸铁介绍
铸铁具有良好的耐磨性能,虽然它的力学性能比钢差,脆性较大,容易碎裂,但在相同条件下比钢的成本低。若采取相应的设计和工艺处理,在一定条件下也能满足不同的要求,故较为广泛用作
摩擦副的
耐磨材料。尤其是当摩擦副既要求耐磨性高,又要有好的减摩性时,往往采用铸铁比采用钢更为有利,如
机床导轨、活塞环、汽缸套等零件主要采用耐磨铸铁制造。
在磨粒磨损条件下工作的铸铁,应具有高而均匀的硬度j白口铸铁就属于这类铸铁。但由于白口铸铁脆性较大,不能承受冲击载荷,因此在生产上常采用激冷的办法来获得冷硬铸铁,即用金属型铸造铸件的耐磨表而,其他部位则采用
砂型铸造。同时调整铁水的化学成分,采用高碳低硅,这样既可保证白口层的深度,又可保证其心部仍为
灰口铸铁组织。用激冷方法制造耐磨铸铁,已广泛应用于轧辊和车轮等的铸造生产中。
在润滑条件下工作的耐磨铸件,要求在软的基体上牢固地嵌有硬的组织组成物。当软摹体磨损后形成沟槽,可保持油膜。珠光体
灰口铸铁基本上能满足这种要求,其组织中铁素体为软基体,渗碳体为硬组分,同时
石墨片也起储油和润滑作用。高磷铸铁由于含有高硬度的磷共晶体,具有较高的耐磨性。在此基础上,如果加入Cr、Mo、W、Cu等合金元素,可以改善组织性能‘,提高基体的强度和韧性,从而使铸铁的耐磨性等得到更大的提高。
除了高磷铸铁以外,钒钛耐磨铸铁、铬钼铜耐磨铸铁和硼耐磨铸铁等也都具有优良的耐磨性能。
分类
根据工作条件的不同,耐磨铸铁分为减磨铸铁和抗磨铸铁。
1.减磨铸铁
减磨铸铁是在有润滑、受粘着磨损的条件下工作的耐磨铸铁,其组织为软基体上嵌有硬的强化相。软基体在磨损后形成的沟槽能贮仔润滑油,工作时可形成油膜,而硬的强化相可承受摩擦。一般,珠光体灰铸铁即可满足这一要求,铁素体为软基体,渗碳体为强化相,片状石墨具有润滑作用,脱落后凹坑也可贮油。为进一步提高珠光体灰铸铁的耐磨性,通常将磷的含量提高到0.4%~0.6%,得到高磷铸铁,可与珠光体或铁素体形成高硬度的共晶组织,能显著提高铸铁的耐磨性。由于普通高磷铸铁的强度和韧性较差,故向其中加入Cr、Mo、W、Cu、Ti、V等合金元素,形成分金高磷铸铁,如磷铜钛铸铁、磷钒钛铸铁、
铬钼铜铸铁、稀土磷铸铁等,这类铸铁具有良好的润滑性及抗咬合、抗擦伤的能力,可广泛用于制造要求具有高耐磨性的
机床导轨、活塞环、汽缸套、
滑动轴承和凸轮轴等材料。
2.抗磨铸铁
抗磨铸铁是在无润滑的干摩擦,及磨粒磨损条件下工作的耐磨铸铁。这类铸铁不仅受到严重的磨损,而且承受较大负荷,如何获得高而均匀的硬度址是提高其耐磨性的关键。白口铸铁就属于这类耐磨铸铁,但白口铸铁脆性较大,不能承受冲击载荷,因此,向白口铸铁中加入Cr、B、Mo、Cu、V等合金元素,形成合金白口铸铁;加Cr、Ni、B提高淬透性,形成马氏体合金白口铸铁;将铁液注入金属模,形成激冷铸铁,获得组织为马氏体、碳化物和球状石墨的中锰合金球畏铸铁,具有良好的抗磨性和一点的冲击韧性。
常见形式
(1)激冷铸铁
白口铸铁具有均匀的高硬度,耐磨性很高,但由于脆性较大,一般仅适用于制造犁铧等承受冲击载荷不大的耐磨铸铁件。因此,生产中常在
灰口铸铁的基础上适当降低硅的含量、加入适量的镍、铬等元素,并采用“激冷”的法得到
冷硬铸铁,即需要获得白口组织的表面采用金属型,其他部位采用
砂型铸造。激冷处理后表面为白口组织,而心部为灰铸铁组织,铸件既有较高的耐磨性。又能承受一定的冲击载荷。激冷铸铁的牌号用“I,T”表示,如LTCrMoR等,主要用于
轧辊、车轮等铸铁件的制造。
(2)抗磨白口铸铁
在白口铸铁的基础上加入较高含量的铬和一定量的钼、镍、铜等元素。热处理后,组织中除马氏体外,还有大量的残余
奥氏体和等合金碳化物。这些合金碳化物硬度高、分布不连续,使铸铁在提高耐磨性的同时,韧性也得到改善。高铬抗磨自口铸铁的牌号用“KmTB”表示,如KmTBMn5M02Cu等,可用于
球磨机衬板、砂浆泵、轧钢导板等铸件。
(3)中锰耐磨铸铁
在稀土镁球墨铸铁的基础上,将锰含量提高到=-5%~9.5%,硅含量提高到=4.0%~4.8%,经球化处理和孕育处理,并适当控制冷却速度,从而获得马氏体、大量的残余奥氏体、合金渗碳体和球状石墨的组织。使铸铁具有较高的耐磨性和抗冲击能向。中锰耐磨铸铁的牌号用“KmmQ”表示,如KmTQMn6等,适用于犁铧、粉碎机锤头、球磨机的衬板、磨球等铸件。
热处理工艺
为了进一步提高耐磨铸铁的使用性能,我们可以采用
热处理的方法。耐磨铸铁根据其含有的元素不同,热处理的方法也不相同,得到的组织也不相同:
(1)含硼耐磨铸铁淬火温度为850-910℃,回火温度以290℃为最佳,淬火-回火后的组织为球状石墨,马氏体,硼碳化物及
残余奥氏体。
(2)
高铬白口铸铁淬火过程中,加热速率一般在100℃/h 与200℃/h 之间,奥氏体化温度在850-1100℃,奥氏体化时间=2h+1/2h/模数(厘米),通过合理控制冷却速度可得到
贝氏体、
奥氏体和
屈氏体等基体组织,但只有金属型铸造屈氏体
高铬铸铁具有性能稳定、成本低廉的特点,具有较强的实用性。
(3)镍硬白口铸铁根据含镍量的不同硬化处理的保温温度有很大的差异。
(4)激冷铸铁的热处理工艺仅仅是低温退火,具体的规范为在热处理炉内以20-30℃/h 的升温速度升温将工件加热到500-550℃,保温2-3h,消除铸铁的内应力,获得稳定的组织,炉冷至300℃以下出炉空冷校直。
(5)稀土变质铸铁经变质处理和950 ℃×2h 正火处理后性能优越。
热处理对耐磨铸铁性能的影响:
热处理对和冲击韧性都有影响。同一回火温度条件下,硬度随奥氏体化温度升高而降低, 冲击韧性随奥氏体化温度升高而增加。同一淬火温度下,硬度随回火温度的增加而略有降低, 在210~ 290℃内,冲击韧性随回火温度升高而增加, 但在330℃回火时, 冲击韧在同一回火温度下, 随奥氏体化温度升高,碳化物分解速度加快, 碳化物数量减少, 淬火后碳化物形态也变为断网状和块状,组织中残余奥氏体量也增多。热处理与磨耗量也有密切的关系,随奥氏体化温度升高,磨损量增多, 即耐磨性下降。随奥氏体化温度升高,碳化物数量减少, 硬度下降,这也正是耐磨性下降的主要原因。