化学元素
镱是一种金属元素,化学符号为Yb,原子序数70,原子量173.04,元素名来源于它的发现地。1878年马里尼亚克从铒土中分离出镱的氧化物,1907年于尔班和韦耳斯指出马里尼亚克分离出的是氧化镥氧化镱混合物。镱在地壳中的含量为0.000266%,主要存在于磷钇矿黑稀金矿中,有7种天然同位素。
介绍
元素符号Yb。原子量173.04(3)。原子序数70。镧系元素。银白色金属。有延性,质较软。有两种晶体结构:α-型为面心立方晶系(室温-798℃);β-型为体心立方(高于798℃)晶格。熔点824℃,沸点1427℃,相对密度6.977(α-型)、6.54(β-型)。不溶于冷水,可溶于酸、液氨。在空气中相当稳定。其氧化态有+2、+3。
在地壳中的含量为2.66×10%。主要存在于磷钇矿和黑稀金矿中,独居石中的含量为0.03%。制法:工业上常用溶剂萃取法和离子交换法从独居石中分离和提纯,或用金属镧还原氧化镱,再经真空蒸馏而得。用途:用作激光材 料,手提式X射线源,Yb离子是重要的发光材料敏化剂,Yb可用于医疗诊断。
理化性质
银白色软金属,有光泽,易氧化,在空气中缓慢地被腐蚀,溶于稀酸和液氨。能与水缓慢作用,二价盐为绿色,可溶于水,并与水反应,缓慢地释放出氢气;三价盐无色。氧化物呈白色。有延展性的银白色金属,富于光泽。
金属镱为银灰色,有延展性,质地较软,室温下镱能被空气和水缓慢氧化。与钐和铕相类似样,镱属于变价稀土,除通常呈正三价外,也可以呈正二价状态。由于这种变价特性,制备金属镱不宜用电解法,而采用还原蒸馏法进行制备和提纯。通常以金属镧为还原剂,利用镱金属高蒸汽压和镧金属低蒸气压的差别进行还原蒸馏。也可以采用铥镱镥富集物为原料,以金属镧为还原剂,在>1100℃和<0.133Pa的高温真空条件下,通过还原-蒸馏的方法直接提取金属镱。象钐和铕一样,镱也可采用湿法还原进行分离和提纯。通常采用铥镱镥富集物为原料,溶解后将镱还原成二价状态,造成显著的性质差异后将其与其它三价稀土进行分离。制取高纯氧化镱通常采用萃取色层法或离子交换法
发现简史
发现人:马里纳克 时间:1878 地点:瑞士
得名于瑞典村庄Ytterby。
1878年,由马里纳克(J.C.G.Marignac)首先分离出镱的化合物;1907年由乌尔班(G.Urbain)指出马里纳克分离出的镱是由镥和已知的镱两个元素组成的。
1842年莫桑德尔钇土中分离出铒土和铽土后,不少化学家利用光谱分析鉴定,确定它们不是纯净的一种元素的氧化物,这就鼓励了化学家们继续去分离它们。
1878年瑞士化学家马里纳克从饵土中分离出一个新元素的氧化物,把这个新元素成为ytterbium,符号为Yb,我们翻译为镱。这一名称和钇、铒、铽的命名一样,都是来自首先发现了钇矿的瑞典的乙特比(Ytterby)小镇。
随着镱以及其他一些稀土元素的发现,完成了发现稀土元素第三阶段的另一半。
1878年,瑞士化学家查尔斯(Jean Charles)和马利格纳克(G Marignac)在“铒”中发现了一种新的稀土元素,为了纪念钇矿石发现地——斯德哥尔摩附近那个名叫伊特比(Yteerby)的小村,把这个新元素命名为Ytterbium,元素符号为Yb,汉译名称为“镱”—是该元素的专用汉字。
镱作为重稀土元素,由于可利用的资源有限,产品价格昂贵,限制了其用途研究。随着光纤通讯和激光等高新技术的出现,镱才逐渐找到大显身手的应用舞台。
矿藏分布
见于氧化钇独居石硅铍钇矿磷钇矿等矿物中。独居石含稀土元素质量分数一般达50%,镱通常占0.03%。
镱在镧系元素中虽然排在铥之后,但其地壳丰度达却到3.3ppm,不但高于铽钬铥镥等其它中重稀土,甚至高于铕(2.2ppm)。镱主要存在于离子型稀土矿、磷钇矿和黑稀金矿等中重稀土矿物中,有7种天然同位素。在江西寻乌中钇富铕离子型矿中,镱在稀土中的配分高于铕,在龙南高钇离子型矿中,镱的配分约是铕的10倍。在某些矿石中与钇及其他有关元素共存(如磷钇矿、硅铍钇矿),二价镱形成绿色盐,三价镱为无色盐。
应用领域
核反应中照射169Tm,生成170Tm,半衰期为129天,这个同位素克发射出很强的X射线。用它来制造常由氧化镱Yb2O3用钙还原而制得。也可用蒸馏法制备(参阅铕)。
用于制造特种合金。用于冶金和化学实验,镱合金已在牙科医学中得到应用。
近几年来,镱在光纤通讯和激光技术两大领域崭露头角并得到迅速发展。
随着“信息高速公路”的建设发展,计算机网络和长距离光纤传输系统对光通讯用的光纤材料性能要求越来越高。镱离子由于拥有优异的光谱特性,可以象铒和铥一样,被用作光通讯的光纤放大材料。尽管稀土元素铒至今仍是制备光纤放大器的主角,但传统的掺铒石英光纤增益带宽较小(30nm),已难以满足高速大容量信息传输的要求。而Yb3+离子在980nm附近具有远大于Er3+离子的吸收截面,通过Yb3+的敏化作用和铒镱的能量传递,可使1530nm光得到大大加强,从而大大提高光的放大效率。
近几年来,铒镱共掺的磷酸盐玻璃受到越来越多研究者的青睐。磷酸盐和氟磷酸盐玻璃具有较好的化学稳定性热稳定性,并具有较宽的红外透过性能和大的非均匀展宽特性,是宽带高增益掺铒放大光纤玻璃的理想材料。若在其中引入Yb3+离子,制成铒镱共掺光纤,就可大大改善光纤放大性能。中国研制的高浓度铒镱共掺磷酸盐光纤(纤芯直径7μm、数值孔径为0.2)适用于全波放大器。利用980nm半导体激光器,在1.5μm的通信窗口对小信号实现了3.8dB的净增益,单位长度增益达2.5dB/cm,比商用石英放大器高出两个数量级
掺Yb3+光纤放大器可以实现功率放大和小信号放大,因而可用于光纤传感器、自由空间激光通信和超短脉冲放大等领域。
中国目前已建成世界上单信道容量最大、速率最快的光传输系统,拥有世界上最宽的信息高速公路。掺镱和其它稀土的光纤放大及激光材料在其中均发挥了关键性巨大的作用。
镱的光谱特性还被用作优质激光材料,既被用作激光晶体,也被用作激光玻璃、和光纤激光器
掺镱激光晶体作为高功率激光材料已形成一个庞大的系列,包括有掺镱钇铝石榴石(Yb:YAG)、掺镱钆镓石榴石(Yb:GGG)、掺镱氟磷酸钙(Yb:FAP)、掺镱氟磷酸锶(Yb:S-FAP)、掺镱钒酸钇(Yb:YV04)、掺镱硼酸盐和硅酸盐等。
半导体激光器(LD)是固体激光器的一种新型泵浦源。Yb:YAG具有许多特点适合高功率LD泵浦,已成为大功率LD泵浦用激光材料。Yb:S-FAP晶体将来有可能用作实现激光核聚变的激光材料,引起人们的关注。在可调谐激光晶体中,有掺铬镱钬钇铝镓石榴石(Cr,Yb,Ho:YAGG),其波长在2.84~3.05μm之间连续可调。据统计,世界上用的导弹红外寻弹头大部分是采用3-5μm的中波红外探测器,因此研制Cr,Yb,Ho:YSGG激光器,可对中红外制导武器对抗提供有效干扰,具有重要的军事意义。
中国在掺镱激光晶体(Yb:YAG、Yb:FAP、Yb:SFAP等)方面,已取得一系列具有国际先进水平的创新性成果,解决了晶体的生长以及激光快速、脉冲、连续、可调节输出等多项关键技术,研究成果已在国防、工业和科学工程等方面获得实际应用,掺镱晶体产品已出口美国、日本等多个国家与地区。
激光材料的另一个大类是激光玻璃。已开发出锗碲酸盐、硅铌酸盐、硼酸盐和磷酸盐等多种高发射截面的激光玻璃。由于玻璃易成型可以制成大尺寸,并具有高光透和高均匀性等特点,可制成大功率激光器。过去人们熟悉的稀土激光玻璃主要是钕玻璃,它已有40多年的发展历史,制作和应用技术成熟,一直是大功率激光装置的首选材料,已被用于核聚变实验装置和激光武器等方面。中国建成的由激光钕玻璃为主要激光介质的神光1号和神光2号大功率激光装置,已达到世界先进水平。但激光钕玻璃如今却遇到了激光镱玻璃的有力挑战。
近几年来的大量研究表明,激光镱玻璃的许多性能超过了钕玻璃。由于掺镱发光只有两个能级储能效率高,在相同增益时镱玻璃储能效率比钕玻璃高16倍,荧光寿命也是钕玻璃的3倍,同时还具有掺杂浓度高、吸收带宽、可直接用半导体泵浦等优点,非常适用于大功率激光器使用。但镱激光玻璃的实用还往往要借助于钕的协助,如采用Nd3+作为敏化剂才能使镱激光玻璃在室温下运转,并在106μm波长处实现激光发射。所以说,镱和钕在激光玻璃方面既是竞争对手,同时又是相互协作的伙伴。
通过调节玻璃成分,可以提高镱激光玻璃的诸多发光性能。以发展高功率激光器为主要方向,用镱激光玻璃制造的激光器越来越广泛地应用于现代工业、农业、医学、科学研究和军事方面。
军事用途:将核聚变产生的能量作为能源一直是人们期待的目标,实现受控核聚变将是人类解决能源问题的重要手段。掺镱激光玻璃以其优异的激光性能正在成为21世纪实现惯性约束核聚变(ICF)升级换代首选材料。
激光武器是利用激光束的巨大能量,对目标进行打击破坏,可以产生上亿度的高温,以光的速度直接攻击,可以指那打那,具有极大的杀伤力,尤其适用于现代战争的防空武器系统。掺镱激光玻璃的优异性能已使它成为制造高功率和高性能激光武器的重要基础材料。
光纤激光器是当今迅猛发展起来的一项新技术,也属于激光玻璃应用范畴。光纤激光器就是用光纤作激光介质的激光器,是光纤与激光技术相结合的产物,是在掺饵光纤放大器(EDFA)技术基础上发展起来的激光新技术。光纤激光器以半导体激光二极管作为泵源,以光纤作为波导和增益介质,同时采用光栅光纤、偶合器等光学元件组合而成。它无需光路机械调整,机构紧凑便于集成。与传统固体激光器半导体激光器相比,具有光束质量高、稳定性好、抗环境干扰性强、免调节、免维护、结构小巧等技术和性能优势。由于掺杂的离子主要是Nd+3、Yb+3、Er+3、Tm+3、Ho+3,都是以稀土光纤作为增益介质,所以目开发出来的光纤激光器也可称作是稀土光纤激光器。
激光用途:高功率掺镱双包层光纤激光是近几年国际上固体激光技术中的一个热点领域。它具有光束质量好、结构紧凑、转换效率高等优点,在工业加工等领域中有广泛的应用前景。双包层掺镱光纤适合于半导体激光器泵浦,具有耦合效率高和激光输出功率高等特点,是掺镱光纤的主要发展方向。中国的双包层掺镱光纤技术与国外先进水平已不相上下。中国研制的掺镱光纤、双包层掺镱光纤以及铒镱共掺光纤在性能和可靠性方面均已达到国外同类产品先进水平,具有成本优势,并拥有多项产品和方法的核心专利技术。
世界著名的德国IPG激光公司日前宣布,他们新近推出的掺镱光纤激光器系统,具有非常优异的光束特性,有大于50,000小时的泵浦寿命,中心发射波长为1070nm-1080nm,输出功率可高达到20KW,已被应用于精细焊接、切割和岩石钻探等方面。
激光材料是发展激光技术的核心和基础。在激光界历来有“一代材料,一代器件”的说法。必须先拥有性能优异的激光材料,综合其它相关技术,才能开发出先进实用的激光器件。掺镱激光晶体激光玻璃作为固体激光材料的生力军正在推进光纤通讯和激光技术的创新发展,尤其是在高功率核聚变激光器、高能量拍瓦(PW,即1015W)激光器、高能量武器激光器等尖端激光技术方面将作出重要贡献。
另外,据某些文章介绍,镱还被用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂和光学玻璃添加剂等。需要指出的是,镱(Ytterbium)和钇(Yttrium)同属稀土元素,虽然英文名称和元素符号差别明显,但汉语拼音却音节相同,在某些汉语译文引用中有时误把钇当作镱,这时就需要我们追寻原文并结合元素符号来加以确认。
科学研究
2022年9月,美国和日本的科学家,在实验室内将镱原子冷却到绝对零度之上十亿分之一摄氏度,这是所有原子停止运动的假设温度。
2024年2月,美国、日本和韩国的研究人员组成的国际科研团队,创造出5种新同位素,分别是钚-182、钚-183、镱-186、镱-187和镥-190。这些元素或许是首次在地球上出现,有助科学家揭示有关地球和宇宙的秘密。相关论文发表于新一期《物理评论快报》杂志。
保护措施
2024年6月,公布《稀土管理条例》,自2024年10月1日起施行。
最新修订时间:2024-07-02 07:28
目录
概述
介绍
理化性质
参考资料