同类二次根式
数学术语
几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。
对比区别
同类二次根式与同类项的异同
同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。
相同点
1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。
2. 两者都能合并,而且合并法则相同。如果把最简二次根式根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。
不同点
1. 判断准则不同。
判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。
2. 合并形式不同。
教学阶梯
“同类二次根式定义”教学的三个梯级
(1)实例引入同类二次根式定义,举正反例反复理解;
(2)定义应用,充分理解“化简后,被开方数相同的二次根式”,并举几组不是最简二次根式的例子进行理解;
(3)定义的拓广,从同类二次根式定义中发现一般同类根式的定义(新教材正文不做要求)。
拓展应用
拓展与应用-一道题的联想
二次根式是初二代数最重要的内容,同类二次根式又是其中最重要的概念之一。人教版初中《代数》第二册第189面关于同类二次根式的描述是“几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫同类二次根式”,显然此定义是建立在最简二次根式基础之上的。
由于题目未讲明与是否是最简二次根式,同学们普遍感到难以下手。求解时,大多数同学的做法是先假定两根式都为最简二次根式,然后由同类二次根式的定义列出等式解的。为了检查正确与否,最后又进行了验算,将代入原题,得到的根式是做为特例,它们满足题意,是同类二次根式。于是题目得到了圆满解决,选择答案B。
但这里得到的与都不是最简二次根式,这与解题时的假设互相矛盾。
问题出在同类二次根式的概念上,概念讲明最终比较时是看最简二次根式的被开方数。而在上题中,两根式有意义的充要条件是在此范围内两根式的被开方数都是分数,根式根本不可能是最简二次根式,所以作出了的假设原本就不成立,也就意味着此题不能直接用课本定义加以判断,必须对同类二次根式的概念加以挖掘和拓展。
根据课本定义有以下两点值得注意:不论几个二次根式是否为最简二次根式都有:1。若被开方数相同,必为同类二次根式,如与;2。经过一步或几步变形,若被开方数相同,必为同类二次根式。如,可变形为即可判断;或将变形为也马上可以判断;甚至可将变为,同时将变为作最终判断。
有了以上两点,问题已迎刃而解,原题不必作任何假设,直接将原式被开方数比较,或者将其一或二者经一步或数步变形后再比较被开方数,即可得到结论。象这样未指明是否是最简二次根式的情况都有无数组解。此题同样有无数组解,答案C是满足题意的一个解。
通过此题的探索,可以得到了判断同类二次根式的更简单和更广泛的方法,不必将原式化成最简二次根式,也不必关心它们是否是最简二次根式,只需直接观察被开方数可否化成相同的值即可得到结论。
参考资料
最新修订时间:2024-11-30 17:22
目录
概述
对比区别
参考资料