周髀算经
古老的天文学和数学著作
《周髀算经》原名《周髀》,算经的十书之一,是古老的天文学数学著作,主要阐明当时的盖天说四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。
内容简介
《周髀算经》的本文限定为商高与周公的问答,似乎其成书年代也就不难断定了。可是,乾嘉以后,考据之学兴起,疑古之风日盛,到了现代,几乎所有的中外学者都不得不接受这样的推断:不仅商高是后人假托的,甚至陈子也是后人虚构出来的。于是,仅仅把商高问答看作《周髀算经》本文就不再有任何意义了。因此,许多学者都将陈子问答以后的文字作为《周髀算经》全文的一个部分,不再加以区分。 如此一来,人们开始根据《周髀算经》中的内容推断它的成书年代。
通常的方法可以分成两类:天文学史专家,喜欢利用现代天文学手段,根据《周髀算经》中记录的一些特殊的天文现象或数据,推算其应该出现的年代,并以此来确定其成书时代。例如,日本学者能田忠亮便以《周髀算经》中的北极星(北极璇玑)到北天极的距离.归算出其成书年代大约在公元前5到7世纪之间。
另一种方法则是根据《周髀算经》涉及的一些内容,与相对而言年代比较明确的其他历史典籍的比较,推断其成书年代。钱宝琮(1892年-1974年)在《周髀算经考》中对《周髀算经》的年代做出如下的考证:第一,《周髀算经》主要分为两个部分,前为商高问答,后为陈子模型;第二,由于怀疑商高是后人的伪托,因此,认为陈子以下的文字才是《周髀算经》的主体,通过与《淮南子·天文训》的比较,从六个方面论述了陈子以下的文字成书在公元前100年左右;第三,“周髀”的意思以陈子之说为准,同时也提到其他一些解释;第四,比较24气名目及次序与《三统历》之异同,提到赵爽注称原节气长度15日与《淮南子》的粗略记法类似;第五,分数算法的繁复与《九章算术》类似。他的结论是,《周髀算经》成书在公元前100年左右。 在疑古思潮的影响下,还有一种倾向也值得人们的注意,那就是以《周髀算经》全书中所有内容的下限来判定它的成书年代,古克礼(C.Cullen)大约可以算是这个方面的一个代表。
出版背景
古克礼认为以前的学者大多错误地企图去发现《周髀算经》作为一个整体完成的年代,因此,它们的结论是在一种假象的幻觉中获得的。他认为,这部书是一些志同道合的研究者分别撰述的论文集。他的做法是,首先,调查《周髀算经》的内在结构,并将其划分为不同的章节,讨论节与节之间的关系;其次,讨论与各节内容有关的外部世界的资料与活动;第三,探讨可能产生与各节内容相关的历史环境。他将《周髀算经》的整体编排打乱,把它们划分为外篇与内篇两个部分。其中内篇以陈子模型为主展开,取其下限在公元1世纪。
在有关外部环境的讨论中,指出作为皇家的藏书目录班固(32-92年)编写的《汉书·艺文志》中有《许商算术》与《杜忠算术》而无《周髀算经》;盖天说在公元1世纪已经为人所熟知,蔡邕在公元180年已经明确将其列为中圈古代的三家宇宙论之一。结论是,由于受到了浑天说的影响,《周髀算经》的成书时间不可能早于公元前l世纪,但也不会晚于公元200年。 判别中国古代科学典籍的完成年代,应该以书中主要的科学思想知识水平所反映的年代为判别标准,而不应以书中夹杂的若干后代掺入的只言片语作为推断的条件。由于早期的科学典籍通常都是人类知识逐渐积累的结晶,因此,搞清楚其中科学思想的萌生时期与流传脉络,也许比单纯判定它的成书年代更有意义。
科学史已经反复地证明,看来是非常显然的科学真理,在人类认识它的初期往往经历了长期的怀疑,甚至抵制。例如,岁差现象在南北朝时期的存废之争,就是一个典型的事例。因此,试图通过以《周髀算经》中的内容的完整或正确性介于某两个古代文献之间,就认定其成书年代也必定介于两者之间的方法,是靠不住的。而利用一些重要数据的理论推算来判定其成书年代的方法,许多时候也是不太可行的。有关《周髀算经》成书年代的讨论,冯礼贵曾经收集了14种不同的观点。尽管在《周髀算经》成书年代的判断上有很大的区别,但几乎所有的研究者都有一个共识,那就是《周髀算经》并不是成书于一人一时,它经过了许多朝代的流传进化才得以完成篇幅与结构。
章鸿钊曾经明确地将《周髀算经》的形成划分为三个时期:第一期,商高问答;第二期,陈子问答;第三期,陈子以后的文字。这样的划分,是许多人都默认的一个事实。正如陈方正在总结前人对《周髀算经》成书过程的讨论时所说: 《周髀》不但不是个人的著作,甚至也未必是单一性质的著作,而可能是由多个在不同历史时期出现,相关、相类但并不相同的学说、理论,逐渐累积而成。因此,将《周髀算经》单纯视为表述盖天说的自洽体系,而忽视它的层积性质,是不甚恰当的。将《周髀算经》的形成划分为三个时期。具体而言,上卷之一,商高与周公的问答,应该是《周髀算经》的原始文字,它反映了早期的以商高为代表的中国古代数学家对数学以及数学之为用的认识。商高答周公问企图说明的问题是解决几何测量学的数学方法,这一点他做到了。这个方法包含勾股定理与用矩之道。按照商高的说法,这些数学内容在大禹治水的时候已经具备,应该是可信的。第二个时期,陈子模型的提出,其内容为上卷之二陈子与容方的问答,这个部分大约在战国时期已经形成。这个时期,陈子将商高的用矩之道进一步发展成为测望日高的重差术。也是可以相信的。陈子问答中试图解决的问题是,利用影差原理与日高术,在商高的用矩之道的基础上,进一步完善更加宏大的测天量地的理论与实践。陈子模型的提出,事实上是在向着这样的目标迈出了关键的一步:把商高的《周髀》转化为盖天说的《周髀》,把一部比较单纯的数学著作转化为一部纯粹的数理天文学论著。
从上卷之三开始,是对盖天说理论的扩张与完善。首先是在陈子模型的基本假设下,建立七衡六间宇宙模型,并以术文的形式给出每日太阳运行轨道的计算方法,使七衡图成为一个可以操作的真正的活动式星盘。在此基础上,进一步引入新的天地形状的模式,给出了地理五带的划分、寒暑成因的解释、日出日落的方位,并建立了盖天说的天体测量学,引入了去极度的概念,制作了比较完整的《四分历》等等。这些虽然大大地丰富了陈子模型的理论内涵,但同时也制造了盖天说系统内部的一些无法完全自洽的矛盾,成为后世学者不断批评的目标。这个部分的形成,意味着《周髀算经》作为一部论述盖天说理论的专著的完成。从《周髀算经》上卷之三开始,出现了大量的“术曰”,这一点与商高问答及陈子问答的行文风格形成明显的反差,从一个侧面反映出其形成时期应该是比前两个部分更加晚近的事实。
综上所述,《周髀算经》的第一部分商高问答,曾经作为《周髀算经》独立的本文,其完成时间应该是在西周初期,约公元前11世纪。陈子问答中的数学理论与宇宙模型完成的时间,大约在公元前4、5世纪。作为一部阐释盖天说理论的数理天文学著作,《周髀算经》从上卷之三开始,是对陈子模型的完善和扩充,其中的一些基本数据与结构,如七衡图与去极度等,应该是在陈子模型提出后就已经确定了的,但是,陈子假设的平行平面的天地模型,则得到了一定的修正,并且加入了一些新的东西,如寒暑成因与历法等内容,总而言之,《周髀算经》第三部分的成型,按照钱宝琮与刘朝阳的考证,应该不会晚于公元前100年。
勾股定理
首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。”(《周髀算经》上卷二)
而勾股定理的证明呢,就在《周髀算经》上卷一——
昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”
商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”
周公对古代伏羲(庖牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来。于是商高以勾股定理的证明为例,解释数学知识的由来。“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形面积*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。
“故折矩①,以为勾广三,股修四,径隅五。”开始做图——选择一个勾三(圆周率三)、股四(四方)的矩,矩的两条边终点的连线应为5(径隅五)。
“②既方之,外半其一矩,环而共盘,得成三四五。”这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角形),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有边长三勾方、边长四股方、边长五弦方三个正方形。
“两矩共长③二十有五,是谓积矩。”此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是大正方形减去右上、左下两个长方形面积后为勾方股方之和。因三角形为长方形面积的一半,可推出四个三角形面积等于右上、左下两个长方形面积,所以 勾方+股方=弦方。
注意:①矩,又称曲尺,L型的木匠工具,由长短两根木条组成的直角。古代“矩”指L型曲尺,“矩形”才是“矩”衍生的长方形。
②“既方之,外半其一矩”此句有争议。清代四库全书版定为“既方其外半之一矩”,而之前版本多为“既方之外半其一矩”。经陈良佐、李国伟、李继闵曲安京等学者研究,“既方之,外半其一矩”更符合逻辑。
③长指的是面积。古代对不同维度的量纲比较,并没有发明新的术语,而统称“长”。赵爽注称:“两矩者,勾股各自乘之实。共长者,并实之数。
由于年代久远,周公弦图失传,传世版本只印了赵爽弦图造纸术在汉代才发明)。所以某些学者误以为商高没有证明(只是说了一段莫名其妙的话),后来赵爽才给出证明。其实不然,摘录赵爽注释《周髀算经》时所做的《勾股圆方图》——“句股各自乘,并之为弦实,开方除之即弦。案:弦图又可以句股相乘为朱实二,倍之为朱实四,以句股之差自相乘为中黄实,加差实亦成弦实。
最新修订时间:2024-11-09 20:44
目录
概述
内容简介
参考资料