太阳能(solar energy),是一种可
再生能源。是指太阳的热
辐射能(参见热能传播的三种方式:辐射),主要表现就是常说的
太阳光线。在现代一般用作发电或者为
热水器提供能源。
技术原理
太阳能是由太阳内部氢原子发生氢氦聚变释放出巨大核能而产生的,来自太阳的
辐射能量。人类所需能量的绝大部分都直接或间接地来自
太阳。植物通过
光合作用释放氧气、吸收
二氧化碳,并把太阳能转变成
化学能在植物体内贮存下来。煤炭、石油、天然气等
化石燃料也是由古代埋在地下的动植物经过漫长的
地质年代演变形成的一次能源。地球本身蕴藏的能量通常指与地球内部的热能有关的能源和与原子核反应有关的能源。
与原子核反应有关的能源正是核能。原子核的结构发生变化时能释放出大量的能量,称为
原子核能,简称核能,俗称原子能。它则来自于地壳中储存的铀、钚等发生裂变反应时的
核裂变能资源,以及海洋中
贮藏的氘、氚、锂等发生聚变反应时的
核聚变能资源。这些物质在发生原子核反应时释放出能量。目前核能最大的用途是
发电。此外,还可以用作其它类型的动力源、热源等。
太阳能是
太阳内部连续不断的
核聚变反应过程产生的能量。地球轨道上的平均
太阳辐射强度为1,369w/㎡。地球
赤道周长为40,076千米,从而可计算出,地球获得的能量可达173,000TW。在海平面上的标准峰值强度为1kw/m2,地球表面某一点24h的年平均辐射强度为0.20kw/㎡,相当于有102,000TW的能量。
尽管太阳辐射到地球大气层的能量仅为其总
辐射能量的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤,每秒照射到地球的能量则为1.465×10^14焦。地球上的
风能、
水能、
海洋温差能、
波浪能和
生物质能都是来源于太阳;即使是地球上的
化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于
太阳辐射能的光热、光电和光化学的直接转换。
主要分类
光伏
光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的固体
光伏电池组成。简单的光伏电池可为手表以及计算机提供能源,较复杂的
光伏系统可为房屋提供照明以及
交通信号灯和监控系统,并入电网供电。
光伏板组件可以制成不同形状,而组件又可连接,以产生更多
电能。天台及建筑物表面均可使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
据调研显示由于产能过剩导致全球5大制造商利润缩水,2012年光伏组件安装量将有所减少,这是10余年来首次出现下降。据
彭博6位分析师的平均预测全球家庭与商业机构将安装24.8GW的光伏组件。这相当于约20座核反应堆的
发电量,但与新增27.7GW的光伏装机量相比下降10%。据彭博新能源财经估计,自1999年以来年均安装量已增长61%。
光热
现代的
太阳热能科技将阳光聚合,并运用其能量产生
热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。
基本特点
优点
(1)普遍:
太阳光普照大地,没有地域的限制,无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,便于采集,且无须开采和运输。
(2)无害:开发利用太阳能不会污染环境,它是最清洁能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。
(3)巨大:每年到达地球表面上的太阳辐射能约相当于130万亿吨煤,其总量属现今世界上可以开发的最大能源。
(4)长久:根据太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。
缺点
(1)分散性:到达地球表面的太阳辐射的总量尽管很大,但是
能流密度很低。平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时
太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1,000W左右;若按全年日夜平均,则只有200W左右。而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。
(2)不稳定性:由于受到昼夜、季节、
地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的
太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的
替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,但蓄能也是太阳能利用中较为薄弱的环节之一。
(3)效率低和成本高:太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。但有的太阳能利用装置,因为效率偏低,成本较高,现在的实验室利用效率也不超过30%,总的来说,经济性还不能与常规能源相竞争。在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。
(4)太阳能板污染:现阶段,太阳能板是有一定寿命的,一般最多3-5年就需要换一次太阳能板,而换下来的太阳能板则非常难被大自然分解,从而造成相当大的污染。
开发历史
据记载,人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。真正将太阳能作为“近期急需的补充能源”,“未来能源结构的基础”,则是近年的事。20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀
做功而抽水的机器。
在1615年-1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,
发动机功率不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。20世纪的100年间,太阳能科技发展历史大体可分为七个阶段。
第一阶段
第一阶段(1900~1920年),清立新能源在这一阶段,世界上太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用
平板集热器和
低沸点工质,装置逐渐扩大,
最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。建造的典型装置有:1901年,在美国
加州建成一台
太阳能抽水装置,采用截头圆锥聚光器,功率:7.36kW;1902~1908年,在美国建造了五套双循环
太阳能发动机,采用平板集热器和低沸点工质;1913年,在
埃及开罗以南建成一台由5个抛物槽镜组成的
太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。
第二阶段
第二阶段(1920~1945年),在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与
矿物燃料的大量开发利用和发生
第二次世界大战(1935~1945年)有关,而太阳能又不能解决当时对能源的急需,因此使太阳能研究工作逐渐受到冷落。
第三阶段
第三阶段(1945~1965年),在第二次世界大战结束后的20年中,一些有远见的人士已经注意到石油和天然气资源正在迅速减少,呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展,并且成立太阳能
学术组织,举办学术交流和展览会,再次兴起太阳能研究热潮。在这一阶段,太阳能研究工作取得一些重大进展,比较突出的有:1953-1954期间,
美国贝尔实验室研制成实用型硅太阳电池,为
光伏发电大规模应用奠定了基础;1955年,以色列泰伯等在第一次国际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件。
此外,在这一阶段里还有其它一些重要成果,比较突出的有:1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的
太阳炉。1960年,在美国
佛罗里达建成世界上第一套用平板集热器供热的氨——水吸收式空调系统,制冷能力为5
冷吨。1961年,一台带有石英窗的
斯特林发动机问世。在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破。平板集热器有了很大的发展,技术上逐渐成熟。
太阳能吸收式空调的研究取得进展,建成一批实验性
太阳房。对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。
第四阶段
第四阶段(1965~1973年),这一阶段,太阳能的研究工作停滞不前,主要原因是
太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与
常规能源竞争,因而得不到公众、企业和政府的重视和支持。
第五阶段
第五阶段(1973~1980年),自从石油在世界能源结构中担当主角之后,石油就成了左右经济和决定一个国家生死存亡、发展和衰退的关键因素,1973年10月爆发
中东战争,
石油输出国组织采取石油减产、提价等办法,支持中东人民的斗争,维护该国的利益。其结果是使那些依靠从中东地区大量进口廉价石油的国家,在经济上遭到沉重打击。于是,西方一些人惊呼:世界发生了“
能源危机”(有的称“石油危机”)。这次“危机”在客观上使人们认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业
发达国家,重新加强了对太阳能及其它可再生能源
技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。1973年,美国制定了政府级阳光
发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:太阳房、工业太阳能系统、
太阳热发电、太阳电池生产系统、分散型和大型
光伏发电系统等。为实施这一计划,日本政府投入了大量人力、物力和财力。
70年代初世界上出现的开发利用太阳能热潮,对中国也产生了巨大影响。一些有远见的科技人员,纷纷投身太阳能事业,积极向政府有关部门提建议,出书办刊,介绍国际上太阳能利用动态;在农村推广应用
太阳灶,在城市研制开发太阳能热水器,空间用的太阳电池开始在地面应用……。1975年,在河南安阳召开“全国第一次太阳能利用工作经验交流大会”,进一步推动了中国太阳能事业的发展。这次会议之后,太阳能研究和推广工作纳入了中国政府计划,获得了专项经费和物资支持。一些大学和科研院所,纷纷设立太阳能课题组和研究室,有的地方开始筹建太阳能研究所。当时,中国也兴起了开发利用太阳能的热潮。这一时期,太阳能开发利用工作处于前所未有的大发展时期,具有以下特点:
各国加强了太阳能研究工作的计划性,不少国家制定了近期和远期阳光计划。开发利用太阳能成为政府行为,支持力度大大加强。国际间的合作十分活跃,一些
第三世界国家开始积极参与太阳能开发利用工作。
研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、
非晶硅太阳电池、
光解水制氢、
太阳能热发电等。
各国制定的太阳能发展计划,普遍存在要求过高、过急问题,对实施过程中的困难估计不足,希望在较短的时间内取代
矿物能源,实现大规模利用太阳能。例如,美国曾计划在1985年建造一座小型太阳能示范卫星电站,1995年建成一座500万kW空间
太阳能电站。事实上,这一计划后来进行了调整,至今空间太阳能电站还未升空。
太阳热水器、
太阳电池等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想。这主要受制于技术运用及科研水平。
第六阶段
第六阶段(1980~1992年),70年代兴起的开发利用太阳能热潮,进入80年代后不久开始落潮,逐渐进入低谷。世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用。受80年代国际上太阳能低落的影响,中国太阳能研究工作也受到一定程度的削弱,有人甚至提出:太阳能利用投资大、效果差、贮能难、占地广,认为太阳能是未来能源,主张外国研究成功后中国引进技术。虽然,持这种观点的人是少数,但十分有害,对中国太阳能事业的发展造成不良影响。这一阶段,虽然太阳能开发研究经费大幅度削减,但研究工作并未中断,有的项目还进展较大,而且促使人们认真地去审视以往的计划和制定的目标,调整研究工作重点,争取以较少的投入取得较大的成果。
第七阶段
第七阶段(1992年~至今),由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》,《
21世纪议程》和《
联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在一起,使太阳能利用工作走出低谷,逐渐得到加强。世界环发大会之后,中国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、
生物质能等清洁能源”,制定了《
中国21世纪议程》,进一步明确了太阳能重点发展项目。
1995年国家计委、国家科委和国家经贸委制定了《新能源和可再生能源发展纲要》在(1996~2010年)制出,明确提出中国在1996-2010年新能源和可再生能源的发展目标、任务以及相应的对策和措施。这些文件的制定和实施,对进一步推动中国太阳能事业发挥了重要作用。1996年,联合国在
津巴布韦召开“世界太阳能高峰会议”,会后发表了《哈拉雷太阳能与持续发展宣言》,会上讨论了《世界太阳能10年行动计划》(1996~2005年),《国际太阳能公约》,《世界太阳能战略规划》等重要文件。这次会议进一步表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动,广泛利用太阳能。
1992年以后,世界太阳能利用又进入一个发展期,其特点是:太阳能利用与世界可持续发展和环境保护紧密结合,全球共同行动,为实现世界太阳能发展战略而努力;太阳能发展目标明确,重点突出,措施得力,有利于克服以往忽冷忽热、过热过急的弊端,保证太阳能事业的长期发展;在加大太阳能研究开发力度的同时,注意科技成果转化为生产力,发展太阳能产业,加速商业化进程,扩大太阳能利用领域和规模,经济效益逐渐提高;国际太阳能领域的合作空前活跃,规模扩大,效果明显。通过以上回顾可知,在本世纪100年间太阳能发展道路并不平坦,一般每次高潮期后都会出现低潮期,处于低潮的时间大约有45年。太阳能利用的发展历程与煤、石油、核能完全不同,人们对其认识差别大,反复多,发展时间长。这一方面说明太阳能开发难度大,短时间内很难实现大规模利用;另一方面也说明太阳能利用还受矿物
能源供应,政治和战争等因素的影响,发展道路比较曲折。尽管如此,从总体来看,20世纪取得的太阳能科技进步仍比以往任何一个世纪都快。太阳能如今是人们生活中不可缺少的一部分。
第八阶段
全世界光伏板并网,贮能难的问题就有改善。
开发经济问题
第一,世界上越来越多的国家认识到一个能够持续发展的社会应该是一个既能满足社会需要,而又不危及后代人前途的社会。因此,尽可能多地用
洁净能源代替高含碳量的矿物能源,是能源建设应该遵循的原则。随着能源形式的变化,常规能源的贮量日益下降,其价格必然上涨,而控制环境污染也必须增大投资。
第二,中国是世界上最大的煤炭生产国和消费国,煤炭约占商品
能源消费结构的76%,已成为中国
大气污染的主要来源。大力开发新能源和可再生能源的利用技术将成为减少环境污染的重要措施。能源问题是世界性的,向新能源过渡的时期迟早要到来。从长远看,太阳能利用技术和装置的大量应用,也必然可以制约矿物能源价格的上涨。
应用领域
太阳能的利用目前还不是很普及,利用太阳能
发电还存在成本高、转换效率低的问题,但是
太阳能电池在为人造卫星提供能源方面得到了应用。
人类依赖这些能量维持生存,其中包括所有其他形式的
可再生能源(地热能资源除外),虽然
太阳能资源总量相当于人类所利用的能源的一万多倍,但太阳能的
能量密度低,而且它因地而异,因时而变,这是开发利用太阳能面临的主要问题。太阳能的这些特点会使它在整个综合能源体系中的作用受到一定的限制。
太阳能既是
一次能源,又是
可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。
建设太空太阳能发电站的设想早在1968年就有人提出,但直到最近人类才开始真正将之付诸行动。日本可谓此项目的先驱者之一,该项目预计耗资210亿美金,发电量能达到十亿瓦特,能供29.4万个家庭使用。在太空建
太阳能发电站,无论气候如何,均可利用太阳能发电,这与在地球上建立太阳能发电站的情况不同。
光热利用
它的基本原理是将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。目前使用最多的
太阳能收集装置,主要有平板型集热器、
真空管集热器、陶瓷太阳能集热器和聚焦集热器(槽式、碟式和塔式)等4种。通常根据所能达到的温度和用途的不同,而把
太阳能光热利用分为低温利用(<200℃)、中温利用(200~800℃)和高温利用(>800℃)。目前低温利用主要有
太阳能热水器、
太阳能干燥器、太阳能
蒸馏器、太阳能采暖(太阳房)、
太阳能温室、
太阳能空调制冷系统等,中温利用主要有
太阳灶、太阳能热发电聚光集热装置等,高温利用主要有高温太阳炉等。
发电利用
清立新能源未来太阳能的大规模利用是用来发电。利用太阳能发电的方式有多种。已实用的主要有以下两种。
1、光—热—电转换。即利用太阳辐射所产生的热能发电。一般是用
太阳能集热器将所吸收的热能转换为工质的蒸汽,然后由蒸汽驱动气轮机带动发电机发电。前一过程为光—热转换,后一过程为热—电转换。
2、光—电转换。其基本原理是利用
光生伏特效应将太阳辐射能直接转换为
电能,它的基本装置是
太阳能电池。
太阳能电池
【材料要求】耐紫外光线的
辐射,透光率不下降。
钢化玻璃做成的组件可以承受直径25毫米的冰球以23米/秒的速度撞击。
【装用的
EVA胶膜固化后的性能要求】
透光率大于90%;交联度大于65%-85%;剥离强度(N/cm),玻璃/胶膜大于30;TPT/胶膜大于15;耐温性:高温85℃、低温-40℃;太阳电池的背面,耐老化、耐腐蚀、耐紫外线辐射、不透气等。
【用途】太阳能发电广泛用于太阳能路灯、
太阳能杀虫灯、太阳能便携式系统,太阳能
移动电源,太阳能应用产品,通讯电源,
太阳能灯具,太阳能建筑等领域。
太阳能在2050年前可能将成为电力的主要来源,受助于发电设备成本大跌。IEA报告表示,2050年前太阳能光伏(PV)系统将最多为全球贡献16%的电力,来自
太阳能发电厂的太阳能热力发电(STE)将提供11%的电力。
光化利用
这是一种利用太阳辐射能直接分解水制氢的光—化学转换方式。它包括光合作用、光电化学作用、光敏化学作用及光
分解反应。
光化转换就是因吸收光辐射导致化学反应而转换为化学能的过程。其基本形式有植物的光合作用和利用物质
化学变化贮存太阳能的光化反应。
植物靠叶绿素把光能转化成化学能,实现自身的生长与繁衍,若能揭示光化转换的奥秘,便可实现人造叶绿素发电。太阳能光化转换正在积极探索、研究中。
通过植物的光合作用来实现将太阳能转换成为生物质的过程。
巨型海藻。
燃油利用
欧盟从2011年6月开始,利用太阳光线提供的高温能量,以水和二氧化碳作为原材料,致力于“太阳能”燃油的研制生产。截至目前,研发团队已在世界上首次成功实现实验室规模的可再生燃油全过程生产,其产品完全符合欧盟的飞机和汽车燃油标准,无需对飞机和
汽车发动机进行任何调整改动。
研制设计的“太阳能”燃油原型机,主要由两大技术部分组成:第一部分利用集中式太阳光线聚集产生的高温能量,辅之ETH Zürich 自主知识产权的金属氧化物材料添加剂,在自行设计开发的太阳能高温反应器内将水和二氧化碳转化成合成气(Syngas),合成气的主要成分为氢气和一氧化碳;第二部分根据费-托原理(Fischer-Tropsch Principe),将余热的高温合成气转化成可商业化应用于市场的“太阳能”燃油成品。
衍生产品
就人类直接利用太阳能还处于初级阶段,主要有太阳能集热、
太阳能热水系统、太阳能暖房、太阳能发电、太阳能无线监控等方式。
无线监控
随着现代化企业制度在我国的普及和深化发展,企业的信息化建设不断深入,利用数字视频技术对企业进行安全防范工作已是大势所趋,结合太阳能技术的发展,推出真正的Winncam零布线无线监控解决方案。(太阳能无线监控安装效果图)
在现代化工业园中,实施视频监控系统,安全保卫部门可以实现在工业园区门口、主要道路、办公楼、周界围墙等地点进行实时全天候视频监控;相关部门可以了解现场情况,加强园区安全保卫管理,提高工作效率;相关管理部门可以实时了解各个监控点的情况;企业领导在办公室利用桌面微机,可以随时了解各主各个监控点实时状况,处理突发事件,亦可以记录多天前的情况,进行追踪分析,除本地建立网络监控系统外,还可对分支机构进行集中远程视频监控.随时考察员工的实际生产劳动纪律众诚天合公司案根据园区的实际需求,有些点取电困难,我们采用太阳能供电,参照有关国际标准和国家标准,并结合我公司对工业园区监控所积累的经验,编制出这套零布线太阳能无线监控技术方案。
整体解决思路
通过对现场的分析我们得出结论,整套系统我们采用Winncam无线网桥2.4和5.8的无线网桥混合组网,通过点对点和点对多点的组网方式,组建三级无线传输网络,使得音视频能流畅的在网络中穿行;设备的前端我们建议采用
红外网络摄像机,后端接受可以用电脑,也可用DVR;但是DVR需要用解码功能。最后我们在后端可以随时查看和管理整套系统。
无线连接
太阳能无线连接拓扑图:
集热器
太阳能热水器装置通常包括太阳能集热器、储
水箱、管道及抽
水泵其他部件。另外在冬天需要热交换器和膨胀槽以及发电装置以备
电厂不能供电之需。太阳能集热器(solar collector)在太阳能集热系统中,接受太阳辐射并向传热工质传递热量的装置。按传热工质可分为液体集热器和空气集热器。按采光方式可分为聚光型集热器和吸热型集热器两种。另外还有一种真空集热器:一个好的太阳能集热器应该能用20~30年。自从大约1980年以来所制作的集热器更应维持40~50年且很少进行维修。
热水系统
早期最广泛的太阳能应用即用于将水加热,现今全世界已有数百万太阳能热水装置。太阳能热水系统主要元件包括收集器、储存装置及循环管路三部分。此外,可能还有辅助的能源装置(如
电热器等)以供应无
日照时使用,另外尚可能有强制循环用的水,以控制水位或控制电动部分或温度的装置以及接到负载的管路等。依循环方式太阳能热水系统可分两种:
1.自然循环式:
此种型式的储存箱置于收集器上方。水在收集器中接受太阳辐射的加热,温度上升,造成收集器及储水箱中水温不同而产生密度差,因此引起浮力,此一热虹吸现象,促使水在储水箱及收集器中自然流动。由于密度差的关系,水流量于收集器的太阳能吸收量成正比。此种型式因不需循环水,维护甚为简单,故已被广泛采用。
2.强制循环式:
热水系统用水使水在收集器与储水箱之间循环。当收集器顶端水温高于储水箱底部水温若干度时,控制装置将启动水使水流动。水入口处设有止回阀以防止夜间水由收集器逆流,引起热损失。由此种型式的热水系统的流量可得知(因来自水的流量可知),容易预测性能,亦可推算于若干时间内的加热水量。如在同样设计条件下,其较自然循环方式具有可以获得较高水温的长处,但因其必须利用水,故有水电力、维护(如漏水等)以及控制装置时动时停,容易损坏水等问题存在。因此,除大型热水系统或需要较高水温的情形,才选择强制循环式,一般大多用自然循环式热水器。
发电系统
太阳能发电系统由
太阳能电池组、
太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。
太阳能发电系统分为离网发电系统与并网发电系统:
1、离网发电系统。主要由
太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置
交流逆变器。
2、并网发电系统就是太阳能组件产生的直流电经过
并网逆变器转换成符合市电电网要求的交流电这后直接接入公共电网。并网发电系统有集中式大型并网电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,还没有太大发展。而分散式小型并网发电系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是目前并网发电的主流。
太阳能板
太阳能电池板是太阳能发电系统中的核心部分,太阳能电池板的作用是将太阳的光能转化为电能后,输出直流电存入蓄电池中。太阳能电池板是太阳能发电系统中最重要的部件之一,其转换率和使用寿命是决定太阳电池是否具有使用价值的重要因素。组件设计:按
国际电工委员会IEC:1215:1993标准要求进行设计,采用36片或72片
多晶硅太阳能电池进行串联以形成12V和24V各种类型的组件。该组件可用于各种户用光伏系统、独立光伏电站和并网光伏电站等。
太阳能组件原材料特点
电池片:采用高效率(16.5%以上)的单晶硅太阳能片封装,保证太阳能电池板发电功率充足。
玻璃:采用低铁钢化绒面玻璃(又称为白玻璃),厚度3.2mm,在太阳电池光谱响应的波长范围内(320-1100nm)透光率达91%以上,对于大于1200nm的红外光有较高的反射率。此玻璃同时能耐太阳紫外光线的辐射,透光率不下降。
EVA:采用加有抗紫外剂、抗氧化剂和固化剂的厚度为0.78mm的优质EVA膜层作为太阳电池的密封剂和与玻璃、TPT之间的连接剂。具有较高的透光率和抗老化能力。
TPT:太阳电池的背面覆盖物—氟塑料膜为白色,对阳光起反射作用,因此对组件的效率略有提高,并因其具有较高的红外发射率,还可降低组件的工作温度,也有利于提高组件的效率。当然,此氟塑料膜首先具有太阳电池封装材料所要求的耐老化、耐腐蚀、不透气等基本要求。
边框:所采用的铝合金边框具有高强度,抗
机械冲击能力强。也是太阳能发电系统中价值最高的部分。
太阳能控制器
太阳能控制器是由专用处理器CPU、
电子元器件、显示器、开关功率管等组成。
主要特点:
1、使用了单片机和专用软件,实现了智能控制;
2、利用蓄电池放电率特性修正的准确放电控制。放电终了电压是由放电率曲线修正的控制点,消除了单纯的电压控制过放的不准确性,符合蓄电池固有的特性,即不同的放电率具有不同的终了电压。
3、具有过充、过放、电子短路、过载保护、独特的防反接保护等
全自动控制;以上保护均不损坏任何部件,不烧保险;
4、采用了串联式PWM充电主电路,使充电回路的电压损失较使用二极管的充电电路降低近一半,充电效率较非PWM高3%-6%,增加了用电时间;过放恢复的提升充电,正常的直充,浮充自动控制方式使系统由更长的使用寿命;同时具有高精度温度补偿;
5、直观的LED发光管指示当前蓄电池状态,让用户了解使用状况;
6、所有控制全部采用工业级芯片(仅对带I工业级控制器),能在寒冷、高温、潮湿环境运行自如。同时使用了晶振定时控制,定时控制精确。
7、取消了电位器调整控制设定点,而利用了E方存储器记录各工作控制点,使设置数字化,消除了因电位器震动偏位、温漂等使控制点出现误差降低准确性、可靠性的因素;
8、使用了数字LED显示及设置,一键式操作即可完成所有设置,使用极其方便直观的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项;
能源电源
第一个空间太阳电池载于1958年发射的Vangtuard I,体装式结构,单晶Si衬底,效率约10%(28℃)。到了1970年代,人们改善了电池结构,采用BSF、
光刻技术及更好
减反射膜等技术,使电池的效率增加到14%。在70年代和80年代,地面太阳电池大约每5.5年全球产量翻番;而空间太阳电池在空间环境下的性能,如抗辐射性能等得到了较大改善。由于80年代太阳电池的理论得到迅速发展,极大地促进了地面和空间太阳电池性能的改善。到了90年代,薄膜电池和Ⅲ-Ⅴ电池的研究发展很快,而且聚光阵结构也变得更经济,空间太阳电池市场竞争十分激烈。在继续研究更高性能的太阳电池,主要有两种途径:研究聚光电池和多带隙电池。
电池效率
由于太阳电池在不同光强或光谱条件下效率一般不同,对于空间太阳电池一般采用AM0光谱(1.367KW/㎡),对于地面应用一般采用AM1.5光谱(即地面中午晴空太阳光,1.000 KWm-2)作为测试电池效率的
标准光源。太阳电池在AM0光谱效率一般低于AM1.5光谱效率2~4个百分点,例如一个AM0效率为16%的Si太阳电池AM1.5效率约为19%)。
◎ 25℃,AM0条件下太阳电池效率
电池类型 面积(cm2) 效率(%) 电池结构
一般Si太阳电池 64cm2 14.6 单结太阳电池
先进Si太阳电池 4cm2 20.8 单结太阳电池GaAs太阳电池 4cm2 21.8 单结太阳电池
InP太阳电池 4cm2 19.9 单结太阳电池
GaInP/GaAs 4cm2 26.9 单片叠层双结太阳电池
GaInP/GaAs/Ge 4cm2 25.5 单片叠层双结太阳电池
GaInP/GaAs/Ge 4cm2 27.0 单片叠层三结太阳电池
◎ 聚光电池
GaAs太阳电池 0.07 24.6 100X
GaInP/GaAs 0.25 26.4 50X,单片叠层双结太阳电池
GaAs/GaSb 0.05 30.5 100X,机械堆叠太阳电池
空间太阳电池在大气层外工作,在近地球轨道太阳平均辐照强度基本不变,通常称为AM0辐照,其光谱分布接近5800K黑体辐射光谱,强度1353mW/cm2。因此空间太阳电池多采用AM0光谱设计和测试。
空间太阳电池通常具有较高的效率,以便在空间发射的重量、体积受限制的条件下,能获得特定的功率输出。特别在一些特定的发射任务中,如微小卫星(重量在50~100公斤)上应用,要求单位面积或单位重量的比功率更高。
抗辐照性能
空间太阳电池在地球
大气层外工作,必然会受到高能带电粒子的辐照,引起电池性能的衰减,主要原因是由于电子或
质子辐射使少数载流子的扩散长度减小。其光电参数衰减的程度取决于太阳电池的材料和结构。还有反向偏压、低温和热效应等因素也是电池性能衰减的重要原因,尤其对叠层太阳电池,由于热胀系数显著不同,电池性能衰减可能更严重。
空间太阳电池的可靠性
光伏电源的可靠性对整个发射任务的成功起关键作用,与地面应用相比,太阳电池/阵的费用高低并不重要,因为空间
电源系统的平衡费用更高,可靠性是最重要的。空间太阳电池阵必须经过一系列机械、热学、电学等苛刻的可靠性检验。
Si太阳电池
硅太阳电池是最常用的卫星电源,从1970年代起,由于空间技术的发展,各种飞行器对功率的需求越来越大,在加速发展其他类型电池的同时,世界上空间技术比较发达的美、日和欧空局等国家,都相继开展了高效硅太阳电池的研究。以日本SHARP公司、美国的SUNPOWER公司以及欧空局为代表,在空间太阳电池的研究发展方面领先。其中,以发展背表面场(BSF)、背表面反射器(BSR)、双层
减反射膜技术为第一代高效硅太阳电池,这种类型的电池典型效率最高可以做到15%左右,目前在轨的许多卫星应用的是这种类型的电池。
到了70年代中期,COMSAT研究所提出了无反射绒面电池(使电池效率进一步提高)。但这种电池的应用受到限制:一是制备过程复杂,避免损坏PN结;二是这样的表面会吸收所有波长的光,包括那些光子能量不足以产生电子-空穴对的
红外辐射,使太阳电池的温度升高,从而抵消了采用绒面而提高的效率效应;三是电极的制作必须沿着绒面延伸,增加了接触的难度,使成本升高。
80年代中期,为解决这些问题,高效电池的制作引入了电子器件制作的一些工艺手段,采用了倒金子塔绒面、激光刻槽埋栅、选择性发射结等制作工艺,这些工艺的采用不但使电池的效率进一步提高,而且还使得电池的应用成为可能。特别在解决了诸如采用带通滤波器消除温升效应以后,这类电池的应用成了空间电源的主角。
虽然很多
工艺技术是由一些研究所提出,但却是在一些比较大的公司得到了发扬光大,比如倒金子塔绒面、选择性发射结等工艺是在澳大利亚
新南威尔士大学光伏研究中心出现,但日本的SHARP公司和美国的SUNPOWER公司目前的技术水平却为世界一流,有的技术甚至已经移植到了地面用太阳电池的大批量生产。
为了进一步降低电池背面复合影响,背面结构则采用背面钝化后开孔形成点接触,即局部背场。这些高效电池典型结构为PERC、PERL、PERT、PERF[1],其中前种结构的电池已经在空间获得实用。典型的高效硅太阳电池厚度为100μm,也被称为NRS/BSF(典型效率为17%)和NRS/LBSF(典型效率为18%),其特征是正面具有倒金子塔绒面的选择性发射结构,前后表面均采用钝化结构来降低
表面复合,背面场采用全部或局部背场。实际应用中还发现,虽然采用局部背场工艺的电池要普遍比NRS/BSF的电池效率高一个百分点,但通常局部背场的抗辐照能力比较差。
到了20世纪90年代中期,空间电源工程人员发现,虽然这种类型电池的初期效率比较高,但电池的末期效率比初期效率下降25%左右,限制了电池的进一步应用,空间电源的成本仍然不能很好地降低。
为了改变这种情况,以SHARP为首的研究机构提出了双边结电池结构,这种电池的出现有效地提高了电池的末期效率,并在HES、HES-1卫星上获得了实际应用。
另外研究人员还发现,卫星对电池阵位置的要求比较苛刻,如果太阳电池阵不对日定向或对日定向差等都会影响到卫星电源的功率,这在一定程度上也限制了卫星整体系统的配置。比如空间站这样复杂的飞行器,有的电池阵几乎不能完全保证其充足的太阳角,因而就需要高效电池来满足要求。虽然目前已经部分应用了常规的高效电池,但电池的高的α吸收系数、有限的空间和重量的需要使其仍然不能满足空间系统大规模功率的需要。传统的电池结构仍然受到很大程度的限制。在这种情况下,俄罗斯在研究高效硅电池初期就侧重于提高电池的末期效率为主,在结合电池阵研究方面提出了双面电池的构想并获得了成功,真正做到了高效长寿命和低成本。
太阳能路灯
太阳能路灯是一种利用太阳能作为能源的路灯,因其具有不受供电影响,不用开沟埋线,不消耗常规电能,只要阳光充足就可以就地安装等特点,因此受到人们的广泛关注,又因其不污染环境,而被称为绿色环保产品。太阳能路灯即可用于城镇公园、道路、草坪的照明,又可用于人口分布密度较小,交通不便经济不发达、缺乏常规燃料,难以用常规能源发电,但太阳能资源丰富的地区,以解决这些地区人们的家用照明问题。
法律法规
2007年8月,国家
发改委发布了《可再生资源中长期发展规划》,规划提出,到2010年中国
可再生能源年利用量将达到2.7亿吨
标准煤。其中,水电达到1.8亿千瓦,风电超过500万千瓦,生物质发电达到550万千瓦,太阳能发电达到30万千瓦;
燃料乙醇和
生物柴油年利用量分别达到200万吨和20万吨;
沼气年利用量达到190亿立方米,
太阳能热水器总集热面积达到1.5亿平方米。从2010年~2020年,中国可再生能源将有更大地发展。其中,水电将达到3亿千瓦,风电装机和生物质发电目标都是3000万千瓦,太阳能发电达到180万千瓦;燃料乙醇和生物柴油年生产能力分别达到1000万吨和200万吨;沼气年利用量达到443亿立方米,太阳能发电达到180万千瓦;太阳能热水器总集热面积达到3亿平方米。根据规划提出的目标,到2020年,中国一次能源消费结构可再生能源比例将由目前的7%提升到16%。
2005年9月,上海市政府公布“上海开发利用太阳能行动计划”。
2006年6月,中国成立风能太阳能资源评估中心。
2009年3月23日,财政部印发《
太阳能光电建筑应用财政补助资金管理暂行办法》,拟对太阳能光电建筑等大型太阳能工程进行补贴。
2011年《十二五新能源规划纲要》中。
2012年3月27日,
中华人民共和国科学技术部以国科发计〔2012〕198号印发《
太阳能发电科技发展“十二五”专项规划》中。
为促进太阳能发电产业持续健康发展,国家能源局根据《可再生能源发展“十二五”规划》,组织编制了《太阳能发电发展“十二五”规划》,现印发你们,并就有关事项通知如下:
一、加强规划指导,优化建设布局。各地能源主管部门根据本规划要求,完善本地区太阳能发电规划目标、布局和开发时序,有序推进太阳能发电项目建设。
二、立足就地消纳,优先分散利用。太阳能发电项目开发要综合考虑太阳能资源、承载物(或土地)资源及并网运行条件等,所发电量立足就地消纳平衡,优先发展分布式太阳能发电。
三、加强电网建设,落实消纳市场。电网企业要加强配套电网建设,优化电网运行,加强
电力需求侧管理,建立太阳能发电综合技术支持体系,提高适应太阳能发电并网运行的系统调节能力,保障太阳能发电并网运行和高效利用。
四、加强建设运行管理,提高技术水平。项目单位要充分发挥项目建设和运行的主体作用,高度重视工程质量,全面加强项目建设运行管理,鼓励开展多种技术和运营方式的创新。
五、加强规划评估,适时调整完善。在规划实施过程中,适时开展太阳能发电规划评估,根据发展形势对规划进行必要的修订和调整。
中国《可再生能源法》的颁布和实施,为太阳能利用产业的发展提供了政策保障;京都议定书的签定,环保政策的出台和对国际的承诺,给太阳能利用产业带来机遇;西部大开发,为太阳能利用产业提供巨大的国内市场;原油价格的上涨,中国能源战略的调整,使得政府加大对可再生能源发展的支持力度,所有这些都为中国太阳能利用产业的发展带来极大的机会。
发展前景
中国
中国蕴藏着丰富的太阳能资源,太阳能利用前景广阔。目前,中国太阳能产业规模已位居世界第一,是全球太阳能热水器生产量和使用量最大的国家和重要的
太阳能光伏电池生产国。中国比较成熟太阳能产品有两项:太阳能光伏发电系统和太阳能热水系统。
2023年2月,《中华人民共和国2022年国民经济和社会发展统计公报》发布,2022全年太阳能电池(光伏电池)产量3.4亿千瓦,增长46.8%。并网太阳能发电装机容量39261万千瓦,增长28.1%。
2023年4月4日,中国气象局发布《2022年中国风能太阳能资源年景公报》。公报显示,2022年,全国太阳能资源总体为偏大年景。
2024年2月29日,国家统计局发布《中华人民共和国2023年国民经济和社会发展统计公报》,2023年太阳能电池(光伏电池)产量5.4亿千瓦,增长54.0%,并网太阳能发电装机容量60949万千瓦,增长55.2%。
澳大利亚
2014年12月15日,
澳大利亚新南威尔士大学(UNSW)的太阳能研究人员,已经可以将太阳能转化为电能的效率提高到40%以上,这是至今最高纪录。
国外
1974年至1997年,美日等发达国家硅半导体光电池发电成本降低了一个数量级:从每瓦50美元降到了5美元。此后世界各国专家大都认为,要使太阳能电站与传统电站(主要是火电站)相比具有经济竞争力,还有一段同样长的路要走——其成本再降低一个数量级才行。目前美国等国家建的利用
太阳池发电的项目很多。在死海之畔有一个1979年建的7000平方米的实验太阳池,为一台150千瓦发电机供热。美国计划将其盐湖的8.3%面积(约8000平方千米)建成太阳池,为600兆瓦的
发电机组供热。今年6月,亚美尼亚无线电物理所的专家宣布,已在该国山地开始建造其“第一个小型实验样板”型工业太阳能电站。该电站使用的涡轮机是使用寿命已届满而从直升机上拆下来的涡轮机,装机容量仅100千瓦,但发电成本仅0.5美分/千瓦小时,效率高达40%—50%。
俄罗斯学者在太阳池研究方面也取得了令人瞩目的进展。一家公司将其研制的太阳能喷水式推进器和喷冷式推进器与太阳池工程相结合,给太阳池附设冰槽等设施,设计出了适用于农家的新式太阳池。按这种设计,一个6到8口人的农户建一个70平方米的太阳池,便可满足其100平方米住房全年的用电需要。
以色列2012年可再生能源装机容量为:风能6.2兆瓦、水电8兆瓦、生物燃料12兆瓦、大型太阳能光热电站0兆瓦、中型太阳能光热电站7兆瓦、小型光伏板发电站218兆瓦。预计至2015年,以大型太阳能光热电站将增至740兆瓦,中型太阳能电站增至330兆瓦,小型光伏板发电站增至330兆瓦。
相关谣言与真相
随着2015年联合国气候变化大会的召开,环境问题势必将成为热门话题。会议上讨论的重点话题之一就是
可替代能源。太阳能专家雷娜·拉索,她在推特上创建了关于太阳能的智囊团,还成立了“Women for Solar”组织帮助人们安装买来的太阳能电池板。
拉索表示,她在以色列长大,从小被教导要环保,节约能源。这也是她为什么那么热衷于太阳能事业的原因。
谣言一:极端天气是太阳能电池板的天敌
真相:它们看起来精巧脆弱,但是实际上却很有弹力。说出来你可能不敢相信……但有的时候飓风把部分屋顶都掀翻了,太阳能板却丝毫未损。
有丙烯酸包裹的太阳能电池板能禁得住速度每小时80英里、直径5英寸的模拟冰雹(想想就很疼)。
亚利桑那州立大学进行了这项模拟实验,他们有世界上最大的太阳能板试验装置之一。
“说实在的,遇到暴风雨、飓风之类的,太阳能电池板其实还能保护你家的屋顶。”拉索说。
谣言二:太阳能电池板根本产生不了多少能量
真相:太阳能以前确实不是一种高效能源,但是时代在变化,科技也在飞速进步呀。拉索表示,在像夏威夷那样阳光充足的地方,太阳能的效率比化石燃料的高多了。
根据太阳能公司“太阳城”所述,一块标准的太阳能电池板能产生大约200瓦特的能量。当然,这也取决于①电池板的品质;②电池板的大小;③直接照射到电池板上的阳光量啦。
谣言三:太阳能很贵
真相:太阳能技术在不断提高,它的花销自然就降低了。在2012年的夏威夷,一套标准的太阳能装置只用四年就回本了,并在使用寿命期间创造了四倍于成本的利润。
拉索说,实际上太阳能每个月可以为一个家庭省下数百美元。很多公司甚至免费给住户安装太阳能电池板,以此收获能源,然后转卖给当地的发电厂。利润由住户和公司分享。这样一来,住户省了电费,公司赚到了钱,双赢。
美国的sunrun公司和英国的伊西斯公司(伊西斯是古埃及太阳女神)都提供这样的交易。另外,以色列的一家公司还打算在美国拓展市场呢。
谣言四:太阳能面板很难维护
真相:拉索表示,太阳能基本一点都不用维护。
“根本就没有能动的部件嘛。”
不过呢,一年清理几次灰尘和碎屑还是有必要的。但基本上用院子里的橡胶水管就可以解决:在早晨或晚上用水冲冲就好(最好在它们不热的时候冲,防止电池板破裂)。自动洒水装置也可以。
谣言五:太阳能只是个备胎选项
真相:在一些人的想象里,太阳能被储存在某个发电机里,遇到紧急情况才拿出来用。然而现实中,太阳能与输电网是相关联的。太阳能用户既可以从电池板用电,又可以从电网用电。多余的太阳能被输送到电网中,过程中经常还能给用户赚点钱。
统计数据
2024年5月8日,全球能源智库Ember发布报告称:太阳能是2023年全球电力增长的主要来源,也是可再生能源的发展亮点。太阳能连续第19年保持其作为增长最快的电力来源的地位,并连续第2年超过风能成为最大的新电力来源。国际可再生能源署的报告同样提到,太阳能和风能是全球可再生能源增长中的绝对主角,新增规模占到总增量的98%。