空间自相关分析
分析类型
空间自相关分析的目的是确定某一变量是否在空间上相关,其相关程度如何。空间自相关系数常用来定量地描述事物在空间上的依赖关系。具体地说,空间自相关系数是用来度量物理或生态学变量在空间上的分布特征及其对领域的影响程度。如果某一变量的值随着测定距离的缩小而变得更相似,这一变量呈空间正相关;若所测值随距离的缩小而更为不同,则称之为空间负相关;若所测值不表现出任何空间依赖关系,那么,这一变量表现出空间不相关性或空间随机性
分析步骤
空间自相关分析一般涉及3个步骤(Cliff和Ord,1981;Good-child,1986):
①取样
②计算空间自相关系数或建立自相关函数
③自相关显著性检验。空间自相关系数有数种,分别适合于不同数据类型。空间自相关分析在地理统计学科中应用较多,现已有多种指数可以使用,但最主要的有两种指数,即Moran的I系数和Geary的c系数。
计算公式
计算公式分别是:
式中,xi和xj是变量x在相邻配对空间单元(或栅格细胞)的取值,是变量的平均值,是相邻权重(通常规定,若空间单元i和j相邻,=1,否则=0),n是空间单元总数。I系数的取值在-1和1之间:小于0表示负相关,等于0表示不相关,大于0表示正相关。C系数的取值一般在0~2之间:大于1表示负相关,等于1 表示不相关,而小于1则表示正相关。
像前面介绍的景观指数一样,空间自相关系数也随观察尺度(或分析尺度)的改变而变化。因此,在进行空间自相关分析时,最好在一系列不同尺度上计算自相关系数,以揭示所研究变量的自相关程度随空间尺度的变化。以自相关系数为纵坐标样点间隔距离为横坐标所作的图称为自相关图。(但是,Goodchild(1986)将以Geary的c系数为纵坐标,样点间隔距离为横坐标所作的图称为方差图。)自相关图可用来分析景观的空间结构特征,判别斑块的大小以及某种格局出现的尺度。Legendre(1993)系统地讨论了空间自相关分析方法在生态学中的应用,(另见Sokal和Oden,1978),并列出一系列常用的计算机软件。
参考资料
最新修订时间:2023-02-18 09:05
目录
概述
分析步骤
计算公式
参考资料