端粒(英文名:
Telomere)是存在于
真核细胞线状染色体末端的一小段
DNA-
蛋白质复合体,端粒短
重复序列与端粒
结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制
细胞分裂周期。端粒、
着丝粒和
复制原点是染色体保持完整和稳定的三大要素。
结构解析
端粒是短的多重复的非转录序列(TTAGGG)及一些
结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在
染色体定位、复制、保护和控制
细胞生长及寿命方面具有重要作用,并与
细胞凋亡、
细胞转化和永生化密切相关。当
细胞分裂一次,每条染色体的端粒就会逐次变短一些。
构成端粒的一部分基因约50~200个
核苷酸,会因多次细胞分裂而不能达到完全复制(丢失),以至细胞终止其功能不再分裂。因此,严重缩短的端粒是
细胞老化的信号。在某些需要无限复制循环的细胞中,端粒的长度在每次细胞分裂后,被能合成端粒的特殊性
DNA聚合酶-
端粒酶所保留。
端粒DNA是由简单的DNA
高度重复序列组成,
端粒酶可用于给端粒DNA加尾,
DNA分子每次分裂复制,端粒就缩短一点(如
冈崎片段),一旦端粒消耗殆尽,细胞并不会立即死亡,但如果细胞继续分裂将会损伤正常的DNA片段,当损伤积累到一定程度后,细胞将死亡。
功能
稳定染色体末端结构,防止染色体间末端连接,并可补偿
滞后链5'末端在消除
RNA引物后造成的空缺。
组织培养的细胞证明,端粒在决定动
植物细胞的寿命中起着重要作用,经过多代培养的老化细胞端粒变短,染色体也变得不稳定。
细胞分裂次数越多,其端粒磨损越多,细胞寿命越短。
组成
端粒DNA是由简单的DNA
高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在酵母和人体中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。
端粒DNA主要功能有:
第二,防止染色体相互融合;
第三,为
端粒酶提供底物,解决
DNA复制的末端隐缩,保证染色体的完全复制。
端粒、
着丝粒和
复制原点是染色体保持完整和稳定的三大要素。同时,端粒又是基因调控的特殊位点, 常可抑制位于端粒附近基因的转录活性(称为端粒的
位置效应,TPE)。
在大多
真核生物中,端粒的延长是由端粒酶催化的。另外,重组机制也介导端粒的延长。
在人类的端粒里,大概会有:
5'...TTAGGG TTAGGG TTAGGG TTAGGG TTAGGG TTAGGG..3' 3'...AATCCC AATCCC AATCCC AATCCC AATCCC AATCCC..5'
发现之旅
科学家们在寻找导致
细胞死亡的基因时,发现了一种叫端粒的存在于染色体顶端的物质。端粒本身没有任何密码功能,它就像一顶
高帽子置于染色体头上。
在新细胞中,细胞每分裂一次,染色体顶端的端粒就缩短一次,当端粒不能再缩短时,细胞就无法继续分裂了。这时候细胞也就到了普遍认为的分裂100次的极限并开始死亡。因此,端粒被科学家们视为“生命时钟”。
科学家由此又开始研究精子和
癌细胞内的
染色体端粒是如何长时间不被缩短的原因。
1984年,分子生物学家在对
单细胞生物进行研究后,发现了一种能维持端粒长度的
端粒酶,并揭示了它在人体内的奇特作用:除了人类
生殖细胞和部分
体细胞外,端粒酶几乎对其他所有细胞不起作用,但它却能维持癌细胞端粒的长度,使其无限制扩增。
早在30年代,缪勒(Muller)和麦克林托克(Meclintock)等就已发现了端粒结构的存在。
1990年起,凯文·哈里(Calvin Harley)就把端粒与人体衰老挂上了钩:
第一、细胞愈老,其端粒长度愈短;细胞愈年轻,端粒愈长,端粒与
细胞老化有关系。衰老细胞中的一些端粒丢失了大部分端粒
重复序列。当细胞端粒的功能受损时,就出现衰老,而当端粒缩短至关键长度后,衰老加速,临近死亡。
第二、
正常细胞端粒较短。
细胞分裂会使端粒变短,分裂一次,缩短一点,就像磨损铁杆一样,如果磨损得只剩下一个残根时,细胞就接近衰老。细胞分裂一次其端粒的DNA丢失约30~200bp(
碱基对)。
第三、研究发现,细胞中存在一种酶,它合成端粒。端粒的复制不能由经典的DNA聚合酶催化进行,而是由一种特殊的
逆转录酶——端粒酶完成。正常
人体细胞中检测不到端粒酶。一些
良性病变细胞,体外培养的
成纤维细胞中也测不到
端粒酶活性。但在
生殖细胞、睾丸、卵巢、
胎盘及胎儿细胞中此酶为阳性。令人注目的发现是,
恶性肿瘤细胞具有高活性的端粒酶,端粒酶阳性的
肿瘤有
卵巢癌、
淋巴瘤、
急性白血病、
乳腺癌、
结肠癌、
肺癌等等。人类肿瘤中广泛地存在着较高的端粒酶耥端挝酶作为肿瘤治疗的靶点,是当前较受关注的热点之一。
其他与寿命有关的基因也在被不断地发现,它们的工作原理与端粒相似。科学家们不但希望能找到人体内所有的生命时钟,更希望找到拨慢时钟的方法。很多植物的端粒酶已被提取出,许多国家的研究组正在从事相关课题的研究。
有观点声称,即使可保护端粒在分裂中不被降解的药物被发明,其对于生命常青的意义也有待商榷,因为当一个老年人被植入年轻的端粒后,其身体是否能接受还是一个问题。
凭借“发现端粒和端粒酶是如何保护染色体的”这一成果,揭开了人类衰老和
罹患癌症等严重疾病的奥秘的三位美国科学家(
美国加利福尼亚旧金山大学的
伊丽莎白·布莱克本(Elizabeth Blackburn)、美国巴尔的摩约翰·霍普金斯
医学院的
卡罗尔·格雷德(Carol Greider)、美国
哈佛医学院的
杰克·绍斯塔克(Jack Szostak)。)获得2009年的
诺贝尔生理学或医学奖。
研究应用
端粒长度的维持是细胞持续分裂的前提条件。在旺盛分裂或需要保持分裂潜能的细胞,如生殖细胞,
干细胞和大多数癌细胞(~85%)中,
端粒酶(Telomerase)被激活,它在端粒末端添加端粒序列,保证这些细胞中端粒长度的稳定,维持细胞的持续分裂能力。
细胞中有端粒酶的存在并不能保证端粒的延伸。因为端粒DNA的四个TTAGGG重复序列可以形成一种四链的
G-四链体结构。该结构非常稳定,会阻止端粒DNA与端粒酶的相互作用。
中科院动物所
谭铮领导的端粒与衰老研究组研究发现了一种
hnRNP A2*蛋白,它可以与端粒DNA和端粒酶发生作用,主动打开端粒G-四链体结构,将端粒3’端的5个碱基暴露出来,促进它和端粒酶的
RNA模板配对,从而增强端粒酶的
催化活性和进行性。
在器官组织中,hnRNP A2*的表达水平与端粒酶活性呈正相关。在细胞内hnRNP A2*蛋白伴随着端粒酶共定位于
卡哈尔体和端粒。在细胞中认为表达hnRNP A2*可以使端粒延长,降低表达则使端粒缩短。这些特征说明hnRNP A2*决定了端粒DNA是否可以得到延长,因此它在调控端粒长度平衡,维持细胞的分裂能力中起着重要作用。
该研究成果在
PNAS发表,为
遗传疾病研究提供了重要理论依据。
相关遗传病
在染色体亚端粒区存在高度
同源性序列在
减数分裂过程中发生异常
同源重组,而导致该区域发生微小的缺失、重复或染色体
相互易位,称为染色体亚端粒区重组异常。该疾病患者主要表现为不同程度的
智力低下、伴有
生长发育迟缓和各器官、系统的畸形。三体综合征。
图片说明:端粒就像DNA的帽子,保护DNA重要信息不丢失(图片来源:ALFRED PASIEKA/ SCIENCE PHOTO LIBRARY)
相关著作
《
端粒效应》,伊莉莎白·布雷克本(Elizabeth Blackburn,又译为
伊丽莎白·布莱克本)、伊丽莎·艾波 著,
廖月娟 译 ,天下文化出版,2017年10月。