协和式飞机(Concorde)是一种由法国宇航和英国飞机公司联合研制的中程超
音速客机,它和苏联
图波列夫设计局的
图-144同为世界上少数曾投入
商业使用的超音速客机。
研发经历
背景
1950年代开始,随着亚音速喷气式客机的普及,以及第一种实用化的超音速军用飞机——F100“超佩刀”战斗机的出现,超音速客机在当时被普遍视为未来的发展路向,苏联、英国、法国、美国都相继计划研发超音速客机。1956年,英国政府成立了超音速运输飞机委员会(Supersonic Transport Aircraft Committee,STAC),联合了英国皇家飞机研究院(Royal Aircraft Establishment,RAE)和布里斯托尔飞机公司(Bristol Aeroplane Company)进行研究,开始探讨开发世界上第一种超音速客机的可行性。到了1959年,委员会得出了初步结论,认为超音速客机在技术上是可行的,并建议研究试制两种超音速客机,分别为1.2马赫的短程客机和2.0马赫的中程客机。 当时英国的布里斯托尔飞机公司获得了英国政府巨额资助,并根据委员会的建议,提出了布里斯托尔198(Bristol 198)计划。布里斯托尔198的设计是一种装备6具涡轮喷气发动机、可载130名乘客并以超音速进行跨大西洋飞行。但由于这种设计理论重量过高,而且装备6具发动机的经济性备受质疑,随后布里斯托尔飞机公司又推出了布里斯托尔198的缩小版本——布里斯托尔223(Bristol 223),设计是一种采用三角翼、装备4具发动机、巡航速度为2马赫、可载客约100人并能够进行跨大西洋飞行的超音速客机。
与此同时,法国也有类似的计划,而且进度与英国相若。法国南方飞机公司(Sud Aviation)和达索公司联合进行研究,提出了超级卡拉维尔(Super-Caravelle)的设计方案,这也是一种采用三角翼、巡航速度为2.2马赫、可载客约70人。
起初,双方有意建造一种长程(6,000千米)和一种短程(4,400千米)的超音速客机,但与潜在客户推销两种机型后,发现航空公司对短程的超音速客机兴趣不大,于是决定取消短程型号。长程型取得超过100架的意向性订单,启始客户包括泛美航空、英国海外航空(BOAC)和法国航空,分别订购6架协和飞机。其他订购航空公司包括巴西泛美航空(Panair do Brasil)、美国大陆航空、日本航空、汉莎航空、美国航空、联合航空、印度航空、加拿大航空、布兰尼夫国际航空、新加坡航空、伊朗航空、希腊奥林匹克航空(Olympic Airways)、澳大利亚航空、中国民航、中东航空和环球航空。而按照当时最保守的估计,订单数字将在1975年上升到225架。
在获得足够航空公司的支持后,英法合作的超音速客机研制计划立即展开。按照协议,飞机机体研制将由英国飞机公司和法国宇航公司共同进行,工程分配比例为40%和60%;而飞机的发动机由英国劳斯莱斯公司和法国斯纳克玛公司共同进行,工程分配比例分别为60%和40%,飞机总体组装地分别设在英国菲尔顿(Filton)和法国图卢兹。最初的计划是试制两架原型机,研制费用为1.5亿英镑,计划售价为每架约1500万至1700万英镑。首架原型机计划在1966年年底首飞,并预计在1969年取得适航证。至1966年,英法双方决定扩大研制规模,增加生产两架预生产机(Pre-production)(生产编号为101和102),和两架供静力试验和金属疲劳试验用的量产机(生产编号为201和202),研制费用增加至5亿英镑。
1964年,英国工党在大选中胜出,哈罗德·威尔逊出任英国首相,面对当时的财政赤字,英国政府有意撤资、退出合作计划,为此法国总统曾亲自出面,强调英国需要履行1962年签定的一纸协议,以及明白单方面拒绝执行协议的后果。碍于条款,英国被迫继续投资,于是接连取消多个飞机研制项目,包括AW.681短距起降运输机(Armstrong Whitworth AW.681)、P.1154超音速垂直/短距起降战斗机(Hawker Siddeley P.1154)、TSR-2战术打击侦察机等。
英法合作
在研发过程中,两国的研制团队关系甚为密切,经常交换意见。至1960年代初,这两种设计已经初步进入建造原型机的阶段,但由于投资庞大,英国政府遂要求英国飞机公司在国际间寻找合作伙伴。与数个国家(包括
德国和
美国)商讨后,只有
法国对合作计划有兴趣。英法两国能够就超音速客机计划达成共识并开展合作,主要是因为两国的设计方案十分接近,在速度、航程、气动布局等方面均有极大的相似性,合作研制有助于平均负担费用。另一方面,当时
波音707、道格拉斯DC-8迅速占据欧洲民航客机市场的大量份额,法国总统
戴高乐不愿意看见欧洲市场被美国飞机制造商
垄断,因此也鼓励两国合作,加快研发进度,争取在美国的超音速客机出现之前抢占市场。合作计划并非由两家公司制定,而是由英法政府以国际条约的方式商议。在法国总统戴高乐和英国首相麦克米伦提议下,合作计划草案于1962年11月28日正式签订。这个计划并包括了一项由英方提出的条款,如果任何一方取消合作就必须付出巨额赔偿金(
英国财政部曾经两次几乎取消合作计划)。此时,布里斯托尔飞机公司和法国南方飞机公司已经分别与其他公司合并为英国飞机公司和法国宇航公司。
命名
在1963年1月13日,当时的法国总统戴高乐率先将这一超音速客机研制计划,以法语命名为“Concorde”(“Concorde”在法语中代表合作、和谐),而英国为了向法国表示对合作的诚意,亦同意采用法语名称,但后来法国否决英国加入
欧洲经济共同体,时任英国首相
麦美伦改变了主意,认为
法国总统戴高乐在飞机的命名上忽视英国,决定将“Concorde”改名为英文“
Concord”(“Concord”在英语中亦是和谐、协调的意思)。直到1967年12月11日首架协和飞机在法国
图卢兹出厂,飞机命名才
尘埃落定,同日英国科技部部长东尼·宾特(Tony Benn)宣布英方愿意使用最初的名称,称协和飞机为“Concorde”。但这也引起了英国国内的争议,一些英国人认为协和飞机合作计划是英国先向法国提出的,理应采用英文名称。为了消除疑虑,宾特随即解释了尾词“e”的意思。他认为“e”可以代表卓越(Excellence)、英格兰(England)、欧洲(Europe)和挚诚协定(Entente Cordiale)。在其回忆录中,宾特忆述他当时收到一封由一位苏格兰人所寄来的信,信中写道:“你说‘e’是代表英格兰,但协和飞机有些部份是苏格兰制造的!”。事实上协和飞机的机鼻确实是在苏格兰生产组装,宾特在回信中表示:“‘e’也可以代表‘Ecosse’(法语中苏格兰的名称),但也可以代表挥霍(extravagance)和不断增加(escalation)!”
20世纪50年代,喷气发动机、
后掠翼等技术的应用,战斗机已经实现了超音速和二倍音速飞行。
喷气式客机趋于成熟后,民航界又把注意力放到超音速客机上,预计1960年代航空公司需要一种既能远程飞行,又能快速到达目的地的飞行器。美、苏、英、法等国纷纷开始探索研制超音速大型飞机。
1956年至1961年,英、法两国分别进行超音速客机研究,由于研制费用高,加上两国方案相近,1962年,英国/法国两国签署了一个政府合作协议。在这个协议上提出了SST计划(
Supersonic Transport Program)即超音速运输计划。协和超音速客机就是
SST计划的产物。由英法两国政府平摊巨额研制费。1963年1月,当时的法国总统
戴高乐音障。英国组装的第一架协和002飞机也于1969年4月首飞。1975年底取得两国
型号合格证后开始投入使用,1976年1月21日投入商业飞行。协和式飞机于1979年
停产,总共生产了20架,英法两国各生产10架。其中2架原型机,2架预生产型和16架生产型。除了2架生产型用于试验,
英国航空和
法国航空各有7架,后来法航1架退役。最终协和式飞机于2003年全部退役。
2003年5月31日,法航的协和客机进行了最后一次
商业飞行。2003年10月24日,英航的协和客机结束了最后一次飞行。
原型机
两架原型机于1965年2月开始建造:001号机由法国宇航在图卢兹建造,而002号机则由英国飞机公司在布里斯托尔的菲尔顿建造。协和飞机001于1969年3月2日在图卢兹首飞,试飞员为安德烈‧杜加德(André Turcat),并于同年10月1日进行首次超音速飞行并持续了9分钟,最高速度达到了1.5马赫;1970年11月,成功达到了2.0马赫。001号飞机后于1971年9月4日飞往南美洲开始进行巡回展示,这也是协和飞机的首次跨大西洋飞行。
协和飞机002于1969年4月9日首飞,由菲尔顿飞往位于格洛斯特郡的费尔福德空军基地(RAF Fairford),试飞员为布赖恩‧杜伯萧(Brian Trubshaw)。在1969年至1977年期间,费尔福德空军基地一直被作为英国生产之协和飞机的试验中心使用。随后002号飞机于1972年6月2日启程飞往中东、远东地区和澳大利亚等地共12个国家作巡回展示,总飞行距离达72,500千米。协和飞机(002)在1973年首次飞抵美国,并降落于新建的达拉斯-沃斯堡国际机场,同时标志着该机场正式开幕。
在1970年大阪世博会上,英法两国联合将一部协和飞机的宣传片带到了展览现场,向世界展示了这种完全不同于当时世界上各种民航客机的全新机型,并进行大力推广。这些巡回展示为协和飞机带来超过70架的新订单,但同时一连串意料之外的不利因素导致大量早期签订的意向性订单被取消,包括1973年石油危机(协和飞机的耗油量比其他亚音速客机高)、部份订购协和飞机的航空公司出现财政问题、图-144于1973年巴黎航空展表演时坠毁,以及例如音爆、起飞噪音、污染等环境问题。到了1976年仅余下四个国家仍然有购买意向,包括英国、法国、中国及伊朗,而最终只有法国航空和英国航空(英国海外航空的后继者)购买,并且两国政府都分享部份从营运协和飞机取得的盈利。以英航为例,协和飞机以政府向英航提供的贷款购入,英国政府则收回80%从协和飞机取得的盈利,直到1984年才停止。
踏入1974年后,英航和法航开始利用协和飞机进行各种示范和飞行测试。协和飞机试飞过程至今仍然保持着多项记录,原型机、预产机和首架量产机共试飞了5,335小时,当中2,000小时是超音速飞行,试飞总时间远远超过同期同等大小的亚音速民航客机达4倍之多。1976年1月,协和飞机正式投入航线上飞行。至此为止,英法两国政府已经在超音速客机计划上投资了超过8亿英镑,超过最初预算(1.5亿英镑)近6倍。1977年时,协和飞机实际价格为2,300万英镑(4,600万美元),也超过预计价格600万英镑。然而,据当时的预算,协和飞机要售出至少64架才能保本,结果巨额开发成本根本无从收回。
英国飞机公司(后来成为英国宇航)和法国宇航(后来成为欧洲宇航防务集团)是协和飞机型号合格证(type certificate)的共同持有人,空中客车集团成立后把型号合格证转到空中客车名下,并继续为协和飞机提供维护和支援工作。
为了满足长时间超音速巡航的需要,协和飞机采用了高效率的
涡轮喷气发动机、大容量油箱等措施,因此协和飞机也是至今续航能力最强的超音速飞机,单次加油可超音速飞行超过7000千米。但尽管如此,协和飞机的航程仍然比其他亚音速民航机短得多,以
波音747-400为例,其航程可达13,450千米。
1976年,在协和飞机投入商业飞行的4个月以后,英国飞机公司和法国宇航公司又共同提出了下一代协和飞机的设计方案,称为“协和B型”(Concorde B)。协和B型的改进重点在于加大航程,包括加大油箱容量,稍微加大机翼面积,增加
前缘襟翼以进一步改善起降时候的低速性能,发动机方面取消了
加力燃烧室,以增大压缩机直径,增加一级低压涡轮代替,并加装噪音消减装置,这种新型发动机的工作效率比既有的奥林匹斯593型还要高25%。当时预计协和B型飞机的航程可以比协和飞机延长805千米(500海里),同时运载能力也有所增加,这使得航空公司能够开拓更多超音速航线。但面对协和飞机惨淡的销情,以及
第二次石油危机的影响,协和B型计划最终取消。
服役历程
协和飞机在1969年首飞、1976年投入服务,主要用于执行从
伦敦希思罗机场(
英国航空)和巴黎
夏尔·戴高乐国际机场(
法国航空)往返于
纽约肯尼迪国际机场的跨
大西洋定期航线。飞机能够在15000米的高空以2.02倍音速巡航,从巴黎飞到
纽约只需约3小时20分钟,比普通民航客机节省超过一半时间,所以虽然票价昂贵但仍然深受商务旅客的欢迎。1996年2月7日,协和式飞机从伦敦飞抵纽约仅耗时2小时52分钟59秒,创下了
航班飞行的最快纪录。
1969年,第一架协和超音速客机诞生,并于1976年1月21日投入商业飞行。协和式超音速客机是世界上为数不多的投入航线上运营的超音速商用客机。协和式飞机一共只生产了20架。
英国航空公司和
法国航空公司使用协和式飞机运营跨越
大西洋的航线。到2003年,尚有12架协和式飞机进行商业飞行。2003年10月24日,协和式飞机执行了最后一次飞行,全部退役。
协和式飞机机翼设计为
三角翼,三角翼的特点为失速
临界点高,飞行速度可以更快,且能有效降低超高速抖动时的问题。协和号四具引擎更配备了一般在战斗机上才看得到的
后燃器(Olympus593,
Rolls-Royce)。这架飞机还有个令人
津津乐道的特点就是它会“变形”:其一是因为在2马赫的飞行速度时,空气摩擦使其
机体产生高热,因
热胀冷缩效应,协和号在飞行时最长会“变长”约24公分;其二是她的可变式机鼻,在飞行时直直挺挺的如一根针以利高速切开空气,但是在起降时,机鼻可以往下调5至12度以利飞行员的视野-事实上由于有很多先进
电脑导航仪器辅助,飞行员也不一定非得看见跑道才能起降,这么做只是求个安心,不过庞大的机鼻角度调整设备却白白的浪费飞机的宝贵重量与
空间。
协和号票价高昂,一张
伦敦至
纽约的来回票要价逾九千美元,亲自搭乘协和号班机往返欧美大陆成为许许多多人自幼以来的梦想。飞机从欧洲到纽约的航程只需要不到三个半小时,且因为
伦敦、
纽约时差四个小时,所以搭乘协和号的旅客最喜欢说:“我还没出发就已经到了”。
2000年7月25日,协和号客机班机AF4590在进行起飞时辗过了跑道上另一架
美国大陆航空的
DC-10脱落的小铁条,造成
爆胎,而轮胎破片以超过音速的高速击中机翼其中的油箱。之后引发大火,导致飞机于起飞数分钟后即爆炸坠毁于机场附近的旅馆。这是协和号服役期间唯一的一次的重大事故。也是有史以来第一架超音速喷气式客机
失事,这场悲剧造成了113人丧命。此次失事促使飞机制造商重新改造机体设计,并修补了诸多缺失。甚至利用
凯夫拉(
Kevlar,常用于制作
防弹衣)材料来保护
油箱,以避免油箱以后遭到高速的异物的穿刺。但尽管如此,由于整个失事过程都被民众用家用录影器材拍摄下来,造成社会大众心理上的严重
震撼,不论这架飞机以往声望有多高,但仅仅一次的失事就让协和号从此一蹶不振。虽然协和号客机在2001年11月重新启航,载客量一直都严重不足。因为对航空公司亏损严重,协和号客机终于在2003年退役。
到2003年4月,尚有12架进行商业飞行。2003年10月24日,协和飞机执行了最后一次飞行。
技术特点
协和式飞机前机身细长,这样既可以获得较高的低速仰角升力,有利于起降,又可以降低
超音速飞行时产生的阻力,有利于超音速飞行。协和式飞机由于机头过于细长,飞行员在起降时由于高仰角导致视线会被机头挡住,同时为了改善起降视野,机头设计成可下垂式,在起降时下垂一定的角度,可以往下调5至12度,以便飞机在起飞和降落时,飞行员获得极好的视野,巡航时则转到正常状态。不过庞大的机头角度调整设备占用了飞机的宝贵重量与空间。
协和式超音速客机采用无
水平尾翼布局,为了适应超音速飞行,协和式飞机的机翼采用三角翼,机翼前缘为S形。协和式飞机共有四台
涡轮喷气发动机。发动机由英国罗尔斯·罗伊斯公司和法国国营航空发动机公司(Rolls-Royce/SNECMA)负责研制。发动机型号为“奥林帕斯”593Mk610
涡轮喷气式发动机(Olympus 593)。单台推力169.32千牛(38,000 lbs)。发动机具备了一般在超音速战斗机上才使用的
加力燃烧室(
后燃器)。协和式飞机的飞行速度能超过音速的两倍,最大飞行速度可达2.04马赫,巡航高度18000米,
巡航速度达到每小时2,150公里。
协和式飞机是1970年代的产品,但电子设备还是比较先进的。特别是在自动飞行方面,协和式飞机能够达到Ⅲ级自动降落和起飞,即协和式飞机完全能按照程序和指令,在无飞行员操纵下自动进行起飞与降落。
协和飞机最初的设计主导思想,是立足于1950年代的航空技术水平,避免采用过多未成熟的新技术。但后来在研制过程中发现,超音速客机在
空气动力学、
飞行控制系统、
发动机等方面的技术难度都超过了预期,过分依靠既有技术难以达到预定的性能指标,所以协和飞机的发展过程中也研究、应用了许多新技术,代表了1960年代欧洲航空技术的最高水平,对以后的民航客机发展具有重要影响,但协和飞机的研制时间也因此大大延长。
高速飞行和飞行性能优化:S型前缘双三角翼;电脑控制的可变发动机进气坡度,
超音速巡航能力;电传操纵发动机,是今天全权限数字电子控制(Full Authority Digital Electronic Control)发动机的先驱;可下垂式机鼻,以增加着陆时
驾驶舱的
能见度;减重和提升性能;2.04马赫的巡航速度能带来最经济的燃油消耗(虽然涡轮喷气发动机于高速时能获得较高的效率,但以2倍马赫速度巡航能面对最低的
激波阻力);机体主要材质为
铝合金以减轻重量,并以传统的方式建造以避免未知因素带来的风险;全权自动驾驶(autopilot)和自动
节流阀(autothrottle),容许飞行员于爬升至着陆期间完全不介入飞行操纵;全电子类比
电传操纵飞行控制系统多功能的飞行操纵界面(control surfaces);部件更轻但压力高达28Mpa的高压
液压系统传输各项空气动力学数据(包括总压力、静压力、
迎角、
侧滑等)的数据通道,
传感器分布于机身多个位置;全电子控制类比电传制动(brake-by-wire)系统,采用俯仰
配平(Pitch trim),燃油可以在各油箱内转移以控制飞机重心和升力中心的相对位置;部分部件以雕刻
铣削方式从一整块合金坯料制造成形,以减少零部件数量,同时减轻重量并提高部件强度。
细长三角翼
协和飞机的S型前缘细长三角翼的出现,有功于1950年代至1960年代期间超音速空气动力学、旋涡动力学的蓬勃发展,许多理论上的预言已经得到了风洞试验的证实。第二次世界大战后,
后掠翼得到了广泛的应用,超音速飞行也成为可能。1950年代初,英国皇家飞机研究院(Royal Aircraft Establishment,RAE)空气动力学部成立了一个研究小组,开始了对超音速客机的初步研究和设计工作。起初研究小组提出过采用后掠翼的方案,但发现这样虽能提高飞行速度,但也产生了一些问题,最主要是降低了飞机的
升阻比,起飞着陆距离长。为了改善飞机的
低速性能,研究小组甚至讨论过采用可变后掠翼的可行性,但依然存在结构复杂、配平困难等问题。但非常幸运的是,一大批优秀的空气动力学家,例如迪特里希·屈西曼(Dietrich Küchemann)、约翰娜·韦伯(Johanna Weber)、
史密斯(J.H.B.Smith)、马斯克尔(E.C.Maskell),当时云集超音速运输飞机委员会(STAC),为协和飞机的细长三角翼作出重要贡献。
这些空气动力学家的研究发现,气流从
涡流发生器(例如细长机翼)前缘通过会分离出稳定的漩涡(
脱体涡,trapped vortex),高速旋转的气流提高了机翼表面的
负压,漩涡强度随
迎角增大而增大,产生很大的
涡升力(Vortex lift),并在
升力线斜率上表现出明显的
非线性。这种非线性
升力在低速或大
迎角状态下更明显,所产生的升力更大。1950年代起,跨声速
风洞、
超声速风洞成为试验超音速飞机
气动性能的最佳途径。在试验中,三角翼的优势越来越明显。在超音速飞行中,三角翼气动阻力小,而机鼻形成的
冲击波到达三角翼的大后掠前缘时,会使三角翼产生非常高的气动效率。另一方面,在大迎角飞行时,三角翼的前沿还能产生大量涡流,附着在上翼面,产生的涡升力能大大提高总体升力。一批三角翼试验机,如亨德里·佩奇公司的HP.115、费尔雷公司的Delta 1、Delta 2,也验证了这项特性。然而,普通无尾三角翼的设计也拥有了后掠翼的部分缺点,由于超声速三角翼飞机
展弦比较小,低速飞行时的升阻比低,气动特性不理想,起飞着陆距离长。因此,协和飞机采用了双三角翼的设计。双三角翼的内外侧两个后掠角,靠近机身的翼根位置有较大的后掠角,以降低阻力;而在主要产生升力的机翼外段采用较小的后掠角和较小的机翼弦长,机翼前沿不是直线而是S型的曲线。细长S型前缘三角翼提高了低速时的升阻比,涡流稳定性好,平衡了高速和低速时的要求,对低速起降时的操纵性有所改善。协和飞机的细长三角翼由于有效利用了脱体涡升力,满足了飞机在低速、大迎角的情况下所需要的升力。此外,S型前缘三角翼的空气动力中心位于飞机重心之后,最大限度地减少升力中心随速度的移动;从亚音速过渡到超音速飞行时,机翼压力中心位置变化较小,提高了飞机的
稳定性。
配平油箱
当任何飞机在飞越
临界马赫数时,
压力中心(Centre of pressure)会向后转移。在飞机重心不变的情况下会为飞机带来一股下俯
力矩。即使工程师为协和飞机设计了S型前缘的三角翼,压力中心仍然会后移约2米。虽然可以利用气动翼面作配平控制(trim controls)来
抵销,但在如此高速的情况下会大幅增加飞机的阻力。因此,协和飞机会通过将燃油在机内三个辅助调整油箱(4个位于机身与机翼前缘交会处,一个位于机尾)之间转移,以电脑自动控制重心来达到配平,成为一种有效的辅助配平控制。
发动机
为了令协和飞机在经济上可行,它需要飞行一段颇长的距离,这需要一种高效率的发动机。为了适应超音速飞行的需要,因此迎风面积较小的
涡轮喷气发动机是最佳选择,以减少阻力及产生达超音速的排气速度,而油耗较低和噪声较少的高涵道比
涡轮风扇发动机则不适合用于超音速客机。每架协和飞机装配了四具由
劳斯莱斯和斯纳克玛公司联合研制的奥林匹斯593 Mk 610型轴流式双转子(twin spool)涡轮喷气发动机,是当时世界上推力最大涡喷发动机,每具可产生多达18.7吨的推力。奥林匹斯发动机最初是为
火神式轰炸机(Avro Vulcan)研制,其后再为协和飞机发展出593型。四具发动机以两具一组发动机短舱的方式,分别下挂在机翼下侧,而没有发动机支架,减少了气体湍流,使发动机更加稳定,以免发动机在超音速飞行时脱落。协和飞机也可以使用
反推力装置,以提高下降率及缩短降落距离。当飞机处于亚音速飞行而高度低于30,000英尺(约9144米)时,靠近机身的两具发动机反推力装置便可开启,飞机的下降率可提高至每分钟10,000英尺(约3048米)。
奥林匹斯593型发动机是西方国家唯一一种带有
加力燃烧室的民用涡喷发动机。协和飞机除了在起飞和
跨音速时(0.95马赫至1.7马赫之间)使用加力燃烧室外,其余时段均会关闭。实际上在无加力燃烧室的协助下亦能勉强到达2马赫,但发现要花更长时间在高阻力跨音速阶段的加速过程,耗油量反而更高。由于涡轮喷气发动机在低速时效率非常低,协和飞机在跑道滑行起飞时就需要消耗超过2吨燃料。由于飞机在经过长时间飞行后飞机重量随燃油消耗而减轻,飞机降落后在地面滑行时只会使用外侧的两具发动机就能提供足够推力。如果协和飞机在降落后滑行中途耗尽燃料的话,飞行员会被解雇。尽管如此,当协和飞机以2马赫速度进行超音速巡航时,奥林匹斯593型其实是世界上效率最高的涡轮喷气发动机。
在超音速飞行时,
进气道口会产生
激波并对空气进行预压缩。为了降低超音速激波
阻力,并让发动机维持最佳进气效率,协和飞机的进气道也经过了特殊设计。所有常规喷气发动机都只能吸收速度约0.5马赫的气流,因此巡航速度达2马赫的协和飞机必须将超音速的进气速度减慢至亚音速,否则发动机效率会大大降低,并可能引发发动机
喘振等问题,另外协和飞机也必须控制减慢气流速度时所形成的
激波位置以避免损坏发动机。为解决上述问题,协和飞机采用了可调节进气道,以一对可移动的大型
斜板(Moveable ramp)和一道溢流门(Spill door/Auxiliary flap),按不同的飞行速度和情况,调节进气速度和激波位置并对引进气流进行预压缩。
两块斜板位于发动机短舱进气道顶部,由液压系统控制,可以向下移动;而溢流门则位于进气道下方可以向上下开合控制气流流入或流出。在飞机起飞时发动机进气需求高,斜板会平放(处于收起状态),溢流门会向上打开以增加进气量。当飞机速度到达0.7马赫时,溢流门会关闭;而速度达1.3马赫时,斜板会开始移动并将气流引导出进气道并用于机舱加压。当飞机以2.0马赫进行超音速巡航时,斜板会覆盖一半进气口面积,协助压缩空气和增加气流温度以减轻发动机压缩段的工作压力。这套系统对提高发动机效率有很大帮助,协和飞机在超音速飞行时,有63%的推力是由进气道预压缩产生。
如果在飞行时发动机失效熄火会为传统亚音速客机带来重大问题,不仅是失去部分推力而且还会产生很大的阻力,导致飞机向失效发动机的一方倾斜和偏航。如果这个情况于超音速飞行时出现,几乎可以肯定会对机体强大产生极大的挑战。发动机失效后涵道实际上已经毫无作用并且成为严重的阻力来源,所以协和飞机会将失效发动机的进气道溢流门向下打开,并将斜板完全展开以形成进气口接近封闭的状态,将气流下压并导向发动机下方通过,将发动机短舱恢复流线型,以减低失效发动机产生的阻力同时提供少许升力。在实际测试中,协和飞机可以在2马赫飞行途中关闭一侧的2具发动机,而不会产生任何操纵问题。而飞行员也需要定期接受培训,学习应付这种突发情况。
表面加热
协和飞机在在五万余
呎高空飞行,机外环境温度约为零下50℃,飞机在超音速飞行时,空气压力和摩擦力会使飞机表面加热,而且飞机不同部分的升温情况也有所差异,并且会在机身表面形成温差。超音速飞机最热的部份除了发动机之外就是机头头锥,协和飞机在飞行时头锥最高温度可达127℃,机身后段也可超过90℃。协和飞机主体材质为
硬铝(AU2GN/ASTM 2168飞行器专用铝材),仅在部分需要长时间承受高温的特殊部位,例如升降
副翼、发动机短舱等处使用
钛合金和不锈钢。铝材在当时已经在飞机制造工业广泛使用,应用经验较多,而且价格低廉、建构容易。硬铝结构稳定,可持续承受达127℃的高温,因此协和飞机的最高速度被限制在2.02马赫,而这个速度是硬铝的高温极限。假如目标速度超过2.02马赫,机体则需要大范围的使用钛合金或不锈钢,大大增加制造成本和飞机重量。
协和飞机于飞行期间会经历两个加热及冷却的循环。第一次冷却于飞机起飞爬升时,机身温度随高度提升而下降;然后超音速飞行时机体表面加热,最后于飞机下降、速度减慢时再度冷却。这些因素都必须于冶金塑模时一并考虑。为此协和飞机在研制时建立了一个试验平台,对一片全尺寸的机翼进行反复加热和冷却,并定时抽取金属样本进行金属疲劳检验。由于热胀冷缩,协和飞机超音速飞行期间,机身会膨胀延长达300毫米,这个现象最明显的地方就是
飞行工程师的仪表板与客舱隔板间的距离会在飞行途中增加并形成一条缝隙。所有协和飞机在其退役飞行时,飞行工程师都会将自己的帽子放置于缝隙中,当飞机降落、冷却后,帽子就会永久被夹在其中。
为了保持机舱凉快,协和飞机所载的燃油会有类似“
散热片”的作用,以吸收空气调节和液压系统产生的热力。超音速飞行时,驾驶舱前的窗户也会被加热,此时窗前会加上一块
遮阳板以防止热力直接传递到驾驶舱。
由于协和飞机具有表面加热的特性,因此其涂装亦有所限制。机身表面大部分面积只能涂上具有高反射特性的白色涂料,以避免超音速飞行时产生的高热影响到铝制结构和油箱安全。至1996年,法国航空为了协助
百事可乐宣传,曾将一架协和飞机(登记编号F-BTSD)除机翼以外涂上以蓝色为主的广告涂装。根据法国宇航和法国航空的建议,这架协和飞机维持以2马赫的速度飞行不多于20分钟,而在1.7马赫下则未有限制。只有F-BTSD被选定用于广告宣传,是因为它不需要执行任何需要长时间以2马赫飞行的定期航班。
结构强度
协和飞机高速飞行时,转向会为飞机结构带来巨大压力,导致结构扭曲变形。为了在超音速飞行时依然能够维持有效、精确的控制,解决办法是对机翼内侧和外侧的
升降副翼(elevon),依照不同的速度状态,进行按比例的调整。超音速飞行时,相对软弱的机翼外段的副翼控制面将会锁定在水平位置,而只会操作靠近翼根位置、相对强度较高的内侧副翼控制面。
另一方面,细长的机身意味着较低的结构强度。实际上协和飞机飞行时机身会出现少许弯曲,尤其在起飞时这个现象更为明显。这个时候当飞行员在机头回望客舱,就能显著的看到这个情况,但由于机舱中段设置了厕所,阻隔旅客的视线,所以大多数旅客并未能察觉到机身的变化。
起落装置
无尾三角翼飞机的起飞(降落)距离和速度都比较高,这对飞机的制动系统和起落架也是一项挑战。协和飞机起飞速度高达每小时400千米(250哩),为了让飞机在起飞失败后迅速减速,协和飞机是首批使用
防抱死制动系统(
ABS)的民航客机,这是一套具有防滑、防锁死等优点的安全制动控制系统。传统制动系统在飞机起飞失败紧急制动时往往只能抱死机轮,加上前冲的惯性,容易造成侧滑、方向不受控制的情况。防抱死制动系统可以防止机轮于制动时锁死令轮胎的
静摩擦力变成
滑动摩擦力而无法控制方向,提高制动效率和操纵性,避免飞机失去控制,这尤其于湿滑地面更为重要。协和飞机也是全球首种采用碳基(carbon-based)
制动装置的民航机。这是
邓禄普(Dunlop)公司的产品,能够把重达188公吨、时速达305千米(190哩)的协和飞机于1,600米内煞停。完全停止后,制动装置的温度会达300℃至500℃,需要数小时才能冷却。
除此之外,由于协和飞机是无尾三角翼设计,在起飞时需要一个较大的迎角(约18度)才能获得足够的升力,因此起落架也需要特别加强,并延长主起落架支架。但这又对起落架的收纳产生麻烦,为了减少占用空间,起落架收起时需要伸缩一段距离,否则两个起落架将会碰撞。另一方面基于大迎角起飞、降落的需要,为避免机尾触地,协和飞机也在机尾设置了一个小型双轮辅助起落架,成为协和飞机的一个特色。
辐射量
协和飞机的巡航高度(18,000米)远高于普通亚音速民航机(12,000米),乘客会因此而承受比普通长途飞行多2倍通量的
宇宙射线电离辐射。所以早在协和飞机投入营运之时,就有学者怀疑长时间超音速飞行会增加患上
皮肤癌的风险。但实际情况是由于飞行时间相对减少,在同等飞行距离下所吸收的
当量剂量(equivalent dose)会较普通客机为少。此外,即使是一些不寻常的
太阳活动亦会导致入射辐射大量增加,为保护机内人员,因此驾驶舱内装有一个宇宙射线测量仪和量度辐射减低率的仪器。一旦入射辐射量过高,协和飞机会下降至14,000米(47,000英尺)以下。量度辐射减低率的仪器读数会决定是否需要下降到更低高度,减少飞机暴露于危险辐射水平的时间。
机舱加压
民航客机机舱通常会在飞机爬升到1,800—2,400米(6,000—8,000尺)之间时加压,而协和飞机只会在6,000尺进行一次加压。协和飞机的加压系统也有完善的安全性考量。在15000米以上高空机舱突然失压所带来的后果是灾难性的,所有乘客和机组人员都会在10至15秒的
有效意识时间(从机舱失压到失去知觉的时间)过后随即昏迷,而高速飞行所带来的
文丘里效应也会迅速抽走舱内空气,令舱内气压低于舱外
大气压。由于协和飞机巡航高度非常高,该处的空气氧气含量、气压极低,即使机舱有一小处缺口也会导致严重的失压和迅速缺氧,所以乘客也难以有足够时间戴上用于普通民航机的紧急氧气面罩。协和飞机因此使用面积较小的窗户以降低失压的速度,并且还有一套后备的机舱空气供应系统以尽量在一小段时间内维持舱内气压,而飞行员需要使用持续正压呼吸机(Continuous Positive Airway Pressure,CPAP)以保障飞行员的氧气供应及其安全,务求令飞机能够有足够时间下降到安全高度。
美国联邦航空局要求飞机需要有其最低紧急下降率,并认为协和飞机假如遇到失压的情况,最佳做法就是将飞机急降。
可下垂式头锥
可下垂的机鼻头锥是协和飞机的外观特征之一,既能在飞行时保持飞机的流线外型减低阻力,又可以于滑行、起飞和着陆时改善飞行员的视界。为了减少飞行阻力,协和飞机的机头较其他民航机更长,并呈针状。三角翼飞机起飞和着陆时的
迎角较大,又长又尖的机鼻会影响飞行员对跑道、滑行道的视野,因此协和飞机的机头设计成可以改变角度以迎合各种操作需要。另外机头头锥也带有一个
整流罩,这个可移动的整流罩具有维持机头流线型、保护驾驶舱玻璃、阻隔超音速飞行热力等功能。整流罩会在头锥下垂前收纳到头锥内,而当头锥恢复水平时,整流罩会升回驾驶舱挡风玻璃前方,令机头回复流线外型。
首两架协和飞机原型机的整流罩只有两扇小窗。但美国联邦航空局反对这种严重影响飞行员视界的设计,并要求改善设计,否则协和飞机将不予容许在美国营运。因此以后制造的预生产型、量产型飞机整流罩均修改成六扇大窗。
在地面滑行和起飞时,驾驶舱内的控制器能控制整流罩收纳到头锥内并把头锥角度下调5°。起飞后,整流罩和头锥都会恢复原位。至飞机降落前,整流罩会再次收纳到头锥内,然后头锥会下调12.5°以取得最佳前下方视界。而降落时头锥会迅速回复到5°的位置以避免头锥触地。在非常罕有的情况下,协和飞机会将头锥下调至12.5°起飞。此外,协和飞机也可以仅仅收起整流罩,而头锥维持水平,但这只有在清洁挡风玻璃和短时间亚音速飞行时使用。
飞行特性
普通亚音速民航客机由
纽约飞往巴黎需要花上8小时,但协和飞机完成同样旅程仅仅需要少于3.5小时,平均巡航速度达2.02马赫(2,140千米/小时),最高巡航高度为18,300米,比普通飞机快超过两倍。
在定期航班服务中,协和飞机采用一种较有效率的“巡航爬升”(cruise-climb)方式。随着燃油消耗,飞机变得越来越轻因而能够爬升至更高的高度。这样的方式通常有较高效率,因此普通民航客机亦会使用类似这种方式爬升,名为阶段爬升(step climb),但普通飞机需要得到航空交通管制员许可才能爬升至更高高度。在
北大西洋航线(North Atlantic Tracks)巡航期间,协和飞机在爬升至50,000英尺后已没有其他民用客机与其共用空层,因此自50,000英尺起协和飞机能缓慢爬升至60,000英尺。由于
平流层气流运动稳定,气流以平流运动为主,超音速飞机的航线是长期固定的,而非像其他飞行在平流层底部的普通民航客机,需要每天根据天气情况调整航线。
英国航空航班的呼号是“
Speedbird”,但唯独由协和飞机执行的航班是例外。为了提醒航空交通管制员协和飞机独特的性能和限制,通讯时会在其呼号“Speedbird”后加上“Concorde”,所以协和飞机的航班(BA001—BA004)在通讯中会被称为“Speedbird Concorde 1”—“Speedbird Concorde 4”。而来往
巴巴多斯的包机服务,及维修后的试验飞行,其呼号也会使用“Speedbird Concorde”为前缀并加上四位数字的航班号码。
技术数据
性能数据
最大巡航速度M2.04,海平面爬升率25.4米/秒,最大载重航程5110千米,起飞距离3410米,着陆距离2220米。
噪音特性
起飞噪音119.5分贝,侧向噪音112.2分贝,进场噪音116.7分贝。
商业飞行
最初共有18家航空公司随后承诺订购77架“协和”,后来各航空公司纷纷终止了签订的订货合同,最终只能将协和式飞机销售给自家国营航空公司,也就是英国航空公司和法国航空公司
1976年1月21日,“协和”客机首次投入商业飞行,英国航空公司首航从伦敦到
巴林,法国航空公司首航从巴黎经达卡尔至
里约热内卢。1976年5月,英航和法航同时推出跨大西洋至美国的航线。后来,协和式飞机的定期航班中除了伦敦-纽约,巴黎-纽约的每日往返飞行外,由于噪音及成本等原因,其它都已先后终止了。运营的前六年,英,法航空公司均在赔钱,不过以后航空公司根据协和式飞机在常客(由于其高速特性,协和式的常客往往为往返于美国和英、法两国之间的工商界、政界高级人士,投资银行家等人)心目中的形象提高了票价,协和飞机开始盈利。在辉煌时期,英航协和式获利占英航总盈余的25%。
提升后协和式飞机票价高昂,亲自搭乘协和式班机往返欧美大陆成为许许多多人的梦想。协和式飞机从欧洲到纽约的航程只需要不到三个半小时,且因为伦敦、巴黎与纽约时差六个小时,所以搭乘协和号的旅客最喜欢说:“我还没出发就已经到了”(因为协和式飞机从巴黎到纽约的飞行时间通常只需3小时15分钟,而巴黎和纽约的时差是6个小时,因此协和飞机的
巡航速度比
晨昏线的移动速度更快,令它能够追上和超越地球的
自转。当乘客飞越大西洋从巴黎到达纽约之后,从时间上来讲,乘“协和”客机从巴黎到纽约,乘客实际上“尚未出发,就已到达”)。
从飞行安全性来看,协和式飞机还是非常安全的,到1999年底,总共安全运营了24年,使协和式飞机获得了全球最安全的客机的名声。
乘客体验
作为英航和法航的“旗舰”,协和飞机为乘客带来的体验与其他亚音速客机有很多不同之处。英航与法航的协和飞机客舱布局均为单一客舱级别,载客100人。客舱被划分为前后两个部分,内部由
雷蒙德·罗维设计,前舱载客40人,后舱载客60人,前后舱之间以厕所分隔。座位布置为每排四座、中央单走道。由于协和飞机机身细长,客舱空间受到相当的限制,在近走道一侧的座位,客舱净空只有约1.8米(6英呎),走道净空最高也只有约1.9米。座椅也比其他亚音速客机头等舱的狭窄,实际上与普通客机的经济客舱座位相若。座位间距为38英寸,只比普通经济舱多约6至7寸。座椅上方行李架的空间也十分有限,所以协和飞机对随身行李的体积也控制得更为严格。
1990年代时由
波音747客机飞行的长途航班上,电影娱乐、角度或方向可调的座椅、步行区域是头等舱和商务舱最常见的服务特点,但这在协和飞机上均一一欠奉,但协和飞机相对较短的飞行时间弥补了欠缺上述设备的缺陷。协和飞机客舱前方装有一块等离子显示屏,显示当前飞行高度、飞行速度和空气温度。协和飞机拥有非常优质、高贵的服务水平,每位乘客均可以免费享用香槟,而飞机膳食均由玮致活(Wedgwood)生产的陶器和银餐具侍奉。
协和飞机的巡航高度较亚音速民航机高出一倍,窗外会呈现出地球的曲率,乱流亦很少出现。超音速巡航期间,虽然飞机外部大气温度低至零下60°C,但机身前部的表面加热会令机体加热至120°C,窗户亦会变得温暖,前舱室温亦较后舱为高。
三角翼亦令协和飞机能够达到较传统客机更大的迎角,此时机翼上表面会产生大量低压涡流,以维持升力。在潮湿的天气环境下,协和飞机甚至会被低压涡流产生的雾气包围。但这些情况只会于起飞和着陆的低速飞行时出现,这时协和飞机或许会遇到一些乱流和振动。
协和飞机的飞行速度加上地球自转速度所产生的向心力,令飞机由西向东飞行时能令机上人员的体重暂时减少1%,而由东向西行时相对速度增大,向心力增加,体重则增加0.3%。但另一方面由于协和飞机的飞行高度很高,离地心较远,重量还要进一步下降0.6%。
由于协和飞机的巡航速度比晨昏线(solar terminator)的移动速度更快,令它能够追上和超越地球的自转。在西行航线上,以当地时间计算,抵达时间往往比起飞时间早。一些由巴黎或伦敦飞往美国方向的班机能在日落后起飞,并于中途追上太阳,在驾驶舱中就能看到太阳从西边升起的景像。换句话说,协和飞机可以让乘客“在伦敦出发之前就已经到达纽约”;英航亦以这个情形来宣传,推出口号“出发前就到达”(Arrive before you leave)。
重大事故
2000年7月25日,
法国航空4590号班机空难发生。一架协和式飞机在
巴黎戴高乐机场起飞后两分钟起火坠毁,机上100名乘客,9名机组成员全部遇难,地面另有4名受害者。根据事后调查,协和式飞机在进行起飞时辗过了跑道上另一架美国大陆航空的DC-10的发动机脱落的金属片,造成爆胎,而轮胎破片高速击中机翼中的油箱之后引发失火,导致飞机于起飞数分钟后坠毁。这是协和超音速客机运营过程中唯一的一次造成人员伤亡的重大事故。至此,协和式飞机25年的安全飞行无伤亡记录被终结。此次失事促使协和式飞机制造商重新改造机体设计,并修补缺陷。甚至利用制造
防弹衣(
Kevlar)原料纤维B来保护油箱,以避免油箱以后遭到高速的异物击穿。并且采用了新式的轮胎。但尽管如此,由于整个失事过程都被民众用家用录影器材拍摄下来,造成社会大众心理上的严重影响,不论这种飞机以往声望有多高,但仅仅一次失事就让协和式飞机从此一蹶不振。
协和飞机的轮胎一直是其弱点之一,历史上曾多次在跑道滑行途中因异物导致爆胎事故。最早的一次记录是在1975年6月20日,一架法国航空的协和飞机在
委内瑞拉加拉加斯机场准备起飞时,一个机轮被跑道上的指示灯损坏。而之后协和飞机爆胎事故几乎每年都会发生。
1977年11月28日,法国航空一架协和飞机(F-BVFD)在
达卡机场降落时重着陆。当时飞机以每秒14英尺(4.62米)的下降率着陆,而实际安全标准为最高每秒10英尺(约3米),导致着陆时主起落架严重损毁,发动机被拖行数百英尺。这架飞机在1982年5月27日法航结束巴黎—达卡—
里约热内卢的航线后退役封存,1994年拆解。
1979年6月14日,法国航空一架协和飞机(F-BVFC)执行54号班机,由华盛顿杜勒斯国际机场起飞时,主起落架其中2个轮胎爆胎,轮胎碎片击穿机翼,机翼上出现一个大洞,二号发动机、部分液压系统和电缆受损,同时引致大量燃油泄漏。事故发生后法国航空部门要求改进协和飞机的机翼设计,当时就提出用防弹物料保护油箱,但并没有落实执行。这次事故发生一个月后,1979年7月21日,法国航空另一架协和飞机(F-BVFD)在杜勒斯国际机场再次爆胎。
1992年3月21日,英国航空公司一架由伦敦飞往纽约的协和飞机(G-BOAB),在途经美国纽约东北海面17000米上空以2.0马赫巡航飞行时,
方向舵上段大部分脱落,导致飞机剧烈震动及操控困难,飞行员尝试关闭一台发动机减轻震动并最终成功降落肯尼迪国际机场,意外中没有乘客受伤。调查发现意外可能是由于维修时的失当,维修时使用的辅料渗入方向舵部件的
蜂窝状结构,导致金属结构强度减低。事故后,英航加强对协和飞机方向舵的人工和
超声波检查。
1998年10月8日,英国航空公司一架的协和飞机(G-BOAC),执行由伦敦飞往纽约的BA001号班机,在途经加拿大
纽芬兰海岸时,
方向舵下段一部分脱落。
2000年7月7日,英国航空公司表示,在旗下6架协和飞机的机尾发现约6厘米至7厘米的“极微小”裂痕,而另一架的机翼出现裂痕更需要停飞检查,但英航表示这“对安全不构成威胁”。
2000年7月25日,
法国航空4590号班机空难发生。法国航空一架协和飞机(F-BTSC)由巴黎
戴高乐机场滑行起飞时,被跑道上的一块由一架美国大陆航空DC-10发动机脱落的金属薄片割破轮胎,轮胎碎片冲击油箱造成油箱内部燃油剧烈波动,油箱从内向外破裂,造成协和飞机起火失事。事件造成机上100人全部遇难。