复变函数,是指以
复数作为
自变量和
因变量的函数,而与之相关的理论就是
复变函数论。
解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为
解析函数论。
简介
复数的概念起源于求
方程的根,在二次、三次代数方程的求根中就出现了
负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。
复变函数论产生于十八世纪。1774年,
欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家
达朗贝尔在他的关于
流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-
欧拉方程”。到了十九世纪,上述两个方程在
柯西和
黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“
柯西-黎曼条件”。
复变函数论的全面发展是在十九世纪,就像
微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。
为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的
拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家
维尔斯特拉斯了。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家
庞加莱、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。
复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、
积分方程、
概率论和
数论等学科,对它们的发展很有影响。
内容
复变函数论主要包括单值解析函数理论、
黎曼曲面理论、几何函数论、
留数理论、
广义解析函数等方面的内容。
如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,
多项式就是这样的函数。
复变函数也研究
多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在黎曼曲面上就变成
单值函数。黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使比较深奥的函数的解析性质和几何联系起来。现时,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。
复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。
导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做
保角变换。共形映象在流体力学、
空气动力学、
弹性理论、
静电场 、电路理论等方面都得到了广泛的应用。留数理论是复变函数论中一个重要的理论。留数也叫做
残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起
线积分计算方便。计算实变函数
定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部
孤立奇点上求留数的计算,当奇点是
极点的时候,计算更加简洁。
把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做
广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象
薄壳理论这样的固体力学部门也在应用。因此,这些年来这方面的理论发展十分迅速。
从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。
复变函数的主要研究对象是解析函数,包括单值函数、多值函数以及几何理论三大部分。在悠久的历史进程中,经过许多学者的努力,使得复变函数论获得了巨大发展,并且形成了一些专门的研究领域。
单值函数中最基本的两类函数是整函数和亚纯函数,它们分别是多项式和有理函数的发展。外尔斯特拉斯将多项式的因式分解定理推广到整函数,而G.米塔-列夫勒则将有理函数分解为部分分式的定理推广到亚纯函数。(C.-)é.皮卡、(F.-é.-J.-) é.波莱尔等进一步发现了整函数的取值与多项式的取值之间有着很大的相似性。在此基础上,1925年R.奈望林纳建立了亚纯函数值分布的近代理论,对函数论的发展产生了重要影响。它和复变函数论的其他领域也存在着密切联系。例如,1973年A.伯恩斯坦应用实变函数的思想引进T^*函数,它在值分布论的亏量问题、整函数的最小模问题以及单叶函数的研究中都发挥了显著效用。
关于多值函数的研究主要是围绕着黎曼曲面及单值化的问题来进行的。1913年(C.H.)H.外尔在其经典著作《黎曼曲面概念》中首先给出了抽象黎曼曲面的定义,它是流形这个现代数学基本概念的雏形。黎曼曲面的研究不仅使自身形成了完美的理论,而且它为代数几何、自守函数、复流形、代数数论等近代数学重要分支的研究提供了简单、明了的模型。
在复变函数的应用上,共形映射具有重要的地位。H.E.茹科夫斯基通过共形映射研究绕机翼的流动便是著名的例子。实际应用中,常常要借助近似方法具体地构造出映射函数。这方面有不少研究工作。当然,有时并不需要知道具体的映射函数,只是应用其几何性质。这就推动了复变函数几何理论的发展。
单叶函数的研究是复变函数几何理论的一个重要组成部分,特别是1916年L.比伯巴赫提出的单位圆内形如式(4)的单叶解析函数应有 |αn|≤n的猜测引起了许多学者的注意。近70年来,围绕着比伯巴赫猜想曾有不少研究工作,但是直到1984年,布朗基才完全证实了这个猜想。证明中主要应用了莱伯德-米林的工作,C.勒夫纳的参数表示法以及关于雅可比多项式的结果。
柯西-黎曼方程表明了解析函数与椭圆型偏微分方程组之间的联系,20世纪50年代以来L.伯斯,И.Η.韦夸等考虑较为一般的椭圆型偏微分方程组,并引入广义解析函数的概念。解析函数决定的映射为共形映射,它把无穷小圆映为无穷小圆;而广义解析函数则决定了拟共形映射,它把无穷小圆映为无穷小椭圆。L.V.阿尔福斯,М.Α.拉夫连季耶夫为拟共形映射的理论奠定了基础。
解析函数虽然在区域内部有很好的性质,但是当自变量z趋向于边界时,函数的变化情况常常十分复杂。关于这方面的研究就形成了一个专门的领域,称为解析函数边界性质。经典的结果有法图定理,Η.Η.卢津和И.И.普里瓦洛夫在这方面也有系统的研究。出现了聚集合的概念,进一步将研究引向深入。
复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。
定义
复变函数是复值函数的简称。
设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为
w=ƒ(z)
这个记号表示,ƒ(z)是z通过规则ƒ而确定的
复数。
如果记z=x+iy,w=u+iv,那么复变函数w=ƒ(z)可分解为w=u(x,y)+iv(x,y);所以一个复变函数w=ƒ(z)就对应着一对两个实变数的
实值函数。
除非有特殊的说明,函数一般指单值函数,即对A中的每一z,有且仅有一个w与之对应。例如,f(z)= 是复平面上的复变函数。但f(z)= 在复平面上并非单值,而是多值函数。对这种多值函数要有特殊的处理方法(见
解析开拓、
黎曼曲面)。
对于z∈A,ƒ(z)的全体所成的数集称为A关于ƒ的像,记为ƒ(A)。函数ƒ规定了A与ƒ(A)之间的一个
映射。例如在w=z2的映射下,z平面上的射线argz=θ与w平面上的射线argw=2θ对应;如果ƒ(A)∈A*,称ƒ把A映入A*。如果ƒ(A)=A*,则称ƒ把A映成A*,此时称A为A*的原像。对于把A映成A*的映射ƒ,如果z1与z2相异必导致ƒ(z1)与ƒ(z2)也相异,则称ƒ是一对一的。在一对一的映射下,对A*上的任一w,A上必有一个z与之对应,称此映射为ƒ的反函数,记为
z=ƒ-1(w)
设ƒ(z)是A上的复变函数,α是A中一点。如果对任一正数ε,都有正数δ,当z∈A且|z-α|<δ时,|ƒ(z)-ƒ(α)|<ε恒成立,则称ƒ(z)在α处是连续的,如果在A上处处连续,则称为A上的
连续函数或连续映射。设ƒ是
紧集A上的连续函数,则对任一正数ε,必存在不依赖自变数z的正数δ,当z1,z2∈A且|z1-z2<δ时|ƒ(z1)-ƒ(z2)|<ε恒成立。这个性质称为ƒ(z)在A上的一致连续性或均匀连续性。
设ƒ(z)是平面开集D内的复变函数。对于z∈D,如果极限存在且有限,则称ƒ(z)在z处是可导的,此极限值称为ƒ(z)在z处的导数,记为ƒ'(z)。这是实变函数导数概念的推广,但复变函数导数的存在却蕴含着丰富的内容。这是因为z+h是z的二维邻域内的任意一点,极限的存在条件比起一维的实数情形要强得多。一个复变函数如在z的某一邻域内处处有导数,则该函数必在z处有高阶导数,而且可以展成一个收敛的幂级数(见
解析函数)。所以复变函数导数的存在,对函数本身的结构有重大影响,而这些结果的研究,构成了一门学科──复变函数论。
极限与连续性
设函数 w = f(z) 在集 E 上确定,z0 为 E 之
聚点,α 为一复常数。 如果 ∀ε0,∃δ > 0, 当 z ∈ E 且 时,有
则称当 z 趋于 z0 时,f(z) 有极限 α,记作
复变函数的导数
设 f(z) 是在区域 D 内确定的单值函数,并且 z0 ∈ D,如果存在且等于有限复数 α,则称f(z) 在 z0 点可导或者可微,或称有导数 α,记作 f’(z0)。