多普勒效应 (Doppler effect) 是为纪念
奥地利物理学家及数学家克里斯琴·约翰·
多普勒(Christian Johann Doppler)而命名的,他于1842年首先提出了这一理论。主要内容为物体辐射的波长因为
波源和
观测者的
相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(
蓝移blue shift);在运动的波源后面时,会产生相反的效应。波长变得较长,频率变得较低(
红移red shift);波源的速度越高,所产生的效应越大。根据波红(或蓝)移的程度,可以计算出波源循着观测方向运动的速度。
原理
多普勒效应指出,波在波源移向
观察者时接收频率变高,而在波源远离观察者时接收频率变低。当观察者移动时也能得到同样的结论。但是由于缺少
实验设备,多普勒当时没有用实验验证,几年后才用测量的数据去验证。假设原有波源的波长为λ,
波速为u,观察者
移动速度为v(以下分析方法不适用于光波,光波的多普勒效应见下文):
当观察者走近波源时观察到的波源频率为,反之则观察到的波源频率为。
一个常被使用的例子是光,当恒星接近观察者时,其发出的光的颜色会比平常更蓝。天文学家可以在恒星经过时看出光颜色的变化。
如果把光波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动时更接近你自己。而在你后面的光源则比原来不动时远了一步。或者说,在你之前的
脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。
产生原因:光源完成一次
全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者看到的光的颜色,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。当波源和观察者有
相对运动时,观察者接收到的频率会改变。在单位时间内,观察者接收到的完全波的个数增多,即接收到的频率增大。同样的道理,当观察者远离波源,观察者在单位时间内接收到的完全波的个数减少,即接收到的频率减小。
发现
多普勒效应也是一个偶然的发现,1842年奥地利一位名叫多普勒的数学家、物理学家。一天,他正路过铁路交叉处,恰逢一列火车从他身旁驰过,他发现火车从远而近时汽笛声变大,但波长变短,而火车从近而远时汽笛声变小,但波长变长。他对这个
物理现象感到极大兴趣,并进行了研究。发现这是由于波源与观察者之间存在着相对运动,使观察者听到的波长不同于波源波长的现象。这就是波长移动现象。因为,波源相对于
观测者在运动时,观测者所听到的波长会发生变化。当波源离观测者而去时,声波的波长增加,当波源接近观测者时,声波的波长减小。波长的变化同波源与观测者间的
相对速度和
声速的比值有关。这一比值越大,改变就越显著,后人把它称为“多普勒效应”。
公式
观察者 (Observer) 和发射源 (Source) 的频率关系为(此式不适用于光波,光波的多普勒效应见下文):
为观察到的频率;
为发射源于该介质中的原始发射频率;
为波在该介质中的行进速度;
为观察者移动速度,若接近发射源则前方运算符号为 + 号, 反之则为 - 号;
为发射源移动速度,若接近观察者则前方运算符号为 - 号,反之则为 + 号。
通过这个公式,我们就知道机械波波长变化的原因:公式中分子是机械波传播速度和观察者速度之和(),
分母是机械波传播速度和发射源移动速度之差(),然后和机械波原始频率()进行乘法运算。观察者与发射源接近时,观察者接受到的频率比原始频率变高,波长比原始波长变短。反之,远离的时候,分子减法运算变小,分母
加法运算变大,计算得到的
频率比原始频率变低,波长变长。
适用
多普勒效应不仅仅适用于
机械波,它也适用于所有类型的波,包括
电磁波和
引力波。科学家
爱德文·哈勃(Edwin Hubble)使用多普勒效应得出宇宙正在膨胀的结论。他发现远离
银河系的天体发射的光线频率变低,即移向光谱的红端,称为
红移,天体离开银河系的速度越快红移越大,这说明这些天体在远离银河系。反之,如果天体
正移向银河系,则光线会发生
蓝移。
在
移动通信中,当
移动台移向基站时,频率变高,远离基站时,频率变低,所以我们在移动通信中要充分考虑多普勒效应。当然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但是这不可否认地会给移动通信带来影响,为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了移动通信的复杂性。
在单色的情况下,我们的眼睛感知的颜色可以解释为光波振动的频率,或者解释为,在1秒钟内电磁场所交替为变化的次数。在可见区域,这种频率越低,就越趋向于红色,而频率越高的,就趋向于蓝、紫色。比如,由氦——氖激光所产生的鲜红色对应的频率为4.74×1014赫兹,而汞灯的紫色对应的频率则在7×1014赫兹以上。这个原则同样适用于机械波(声波):声波“音调”的“高低”(主观)的感觉对应于声音的波长(客观),且与波长成反比关系,波长越短音调越“低”,类似于红色,波长越长音调越“高”,类似于(蓝)紫色。
如果波源是固定不动的,不动的接收者所接收的波的振动与波源发射的波的节奏相同:发射频率等于接收频率。如果波源相对于接收者来说是移动的,比如相互远离,那么情况就不一样了。相对于接收者来说,波源产生的两个
波峰之间的距离拉长了,因此两上波峰到达接收者所用的时间也变长了。那么到达接收者时频率降低,所感知的颜色向红色移动(如果波源向接收者靠近,情况则相反)。为了让读者对这个效应的影响大小有个概念,在显示了
多普勒频移,近似给出了一个正在远离的光源在
相对速度变化时所接收到的频率。例如,在上面提到的氦——氖激光的红色
谱线,当波源的速度相当于光速的一半时,接收到的频率由4.74×1014赫兹下降到2.37×1014赫兹,这个数值大幅度地降移到
红外线的频段。
体现
多普勒效应,它是以发现者
克里斯蒂安·多普勒的名字命名的。多普勒是
奥地利物理学家和数学家。他于1842年首先发现了这种效应。为了理解这一现象,可以观察在火车以恒定速度驶近时,
汽笛发出的机械波在传播时的规律。其结果是汽笛声音变得急促,汽笛机械波的波长缩短,好像波被压缩了;相反,当火车驶向远方时,机械波的波长变大,好像波被拉伸了。火车靠近时声音变得急促这一现象的原因是:在一定
时间间隔内,在火车前进方向上传播的波的次数增加,而声音的高低实际上就是
音波在单位时间内的频率,这就是
观察者为什么会感受“音调”变“高”的原因。定量分析得到观察到的频率,其中u是波在静止介质中的
传播速度,为
波源相对于介质的速度,为观察者相对于介质的速度,表示波源的
固有频率。当观察者朝波源运动时,前面取
正号;当观察者背离波源(即顺着波源)运动时,前取
负号。当波源朝观察者运动时前取负号,当波源背离观察者运动时前取正号。从上式可以很容易得知,当观察者与波源相互靠近时,;当观察者与波源相互远离时f1
设波源,观察者分别以速度,在静止的介质中沿同一直线
相向运动,波源发出波在介质中的传播速度为,且。当波源不动时,波源
发射频率为,波长为的波,观察者接收到的波的频率为:
所以得
⑴当观察者和波源都不动时,,由上式得
⑵当观察者不动,波源接近观察者时,观察者接收到的频率为
显然此时频率大于原来的频率
由上面的式子可以得到多普勒效应的所有表现。
光波的多普勒效应
具有
波动性的光也会出现这种效应,它又被称为多普勒-斐索效应。因为法国物理学家斐索(1819~1896年)于1848年独立地对来自恒星的频率偏移做了解释,指出了利用这种效应测量恒星
相对速度的办法。光波(
电磁波)与声波(
机械波)的不同之处在于,光波频率的变化使人感觉到是颜色的变化。如果恒星远离我们而去,则光的谱线就向红光方向移动,称为
红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移。
⑴纵向多普勒效应(即波源的速度与波源与
接收器的连线
共线):
其中为波源与接收器的
相对速度。当波源与观察者接近时,取正,称为“
紫移”或“
蓝移”;否则取负,称为“红移”。
⑵横向多普勒效应(即波源的速度与波源与接收器的连线垂直): 其中
⑶普遍多普勒效应(多普勒效应的一般情况):
其中,为接收器与波源的连线到速度方向的夹角。纵向与横向多普勒效应分别为取0或π/2时的特殊情况。
应用分类
医学应用
机械波的多普勒效应也可以用于医学的诊断,也就是我们平常说的
彩超。彩超简单的说就是高清晰度的黑白
B超再加上彩色多普勒,首先说说超声的波长移
诊断法,即
D超,此法应用多普勒效应原理,当波源与接收体(即探头和反射体)之间有
相对运动时,回波的波长有所改变,此种波长的变化称之为波长移,D超包括脉冲多普勒、连续多普勒和彩色多普勒血流图像。
彩色多普勒超声一般是用自
相关技术进行多普勒
信号处理,把自相关技术获得的
血流信号经
彩色编码后实时地叠加在
二维图像上,即形成彩色多普勒超声血流图像。由此可见,彩色多普勒超声(即彩超)既具有二维超声结构图像的优点,又同时提供了
血流动力学的丰富信息,实际应用受到了广泛的重视和欢迎,在临床上被誉为“非创伤性
血管造影”。
为了检查心脏、血管的
运动状态,了解血液流动速度,可以通过发射超声来实现。由于血管内的血液是流动的物体,所以超声波源与相对运动的血液间就产生多普勒效应。血液向着波源运动时,
反射波的波长被压缩,因而频率增加。血液离开波源运动时,反射波的波长变长,因而频率减少。反射波波长增加或减少的量,是与血液流运速度成正比,从而就可根据超声波的波长移量,测定血液的流速。
我们知道血管内
血流速度和血液流量,它对
心血管的
疾病诊断具有一定的价值,特别是对循环过程中供氧情况,闭锁能力,有无
紊流,血管粥样硬化等均能提供有价值的诊断信息。
超声多普勒法诊断心脏过程是这样的:
超声换能器产生一种短波的等幅超声信号,激励
发射换能器探头,产生连续不断的超声波,向人体心血管器官发射,便产生多普勒效应,当超声波束遇到运动的脏器和血管时,反射信号就为
换能器所接受,就可以根据反射波与发射的波长差异求出血流速度,根据反射波以波长是增大还是减小判定血流方向。为了使探头容易对准被测血管,通常采用一种
板形双
叠片探头。
彩色多普勒超声
补充: 多普勒效应也可以用波在介质中传播的衰减
理论解释。波在介质中传播,会出现
波散现象,随距离增加,短波向长波移动。
医疗领域内B超的发展方向就是彩超,下面我们来谈谈彩超的特点:
其主要优点是:
但彩超采用的相关技术是
脉冲波,对检测物速度过高时,彩流颜色会发生差错,在定量分析方面明显逊色于波谱多普勒,现今
彩色多普勒超声仪均具有波谱多普勒的功能,即为彩色──双功能超声。
彩色
多普勒超声血流图(CDF)又称彩色多普勒超声显像(CDI),它获得的
回波信息来源和波谱多普勒一致,血流的分布和方向呈
二维显示,不同的速度以不同的颜色加以别。双功多普勒超声系统,即是
B型超声图像显示血管的位置。多普勒测量血流,这种B型和多普勒系统的
结合能更精确地定位任一特定的血管。
彩超的临床应用
运用35μm短波探头可发现血管内小于1mm的
钙化点,对于
颈动脉硬化性闭塞病有较好的诊断价值,还可利用血流探查
局部放大判断管腔狭窄程度,
栓子是否有脱落可能,是否产生了
溃疡,预防
脑栓塞的发生。
彩超对于各类
动静脉瘘可谓最佳
诊断方法,当探查到五彩镶嵌的环状彩谱即可确诊。
对于
颈动脉体瘤、腹主要脉瘤、
血管闭塞性脉管炎、慢性
下肢静脉疾病(包括下肢静曲张、原发生下肢深静脉瓣功能不全、下肢深
静脉回流障碍、
血栓性静脉炎和
静脉血栓形成)运用彩超的高清晰度、局部放大及血流
波谱探查均可作出较正确的诊断。
(二)腹腔脏器
主要运用于肝脏与肾脏,但对于腹腔内良恶性病变鉴别,
胆囊癌与大的
息肉、慢性较重的炎症鉴别,
胆总管、
肝动脉的区别等疾病有一定的辅助诊断价值。
对于
肝硬化彩超可从肝内各种内流速快慢、血管管腔大小、方向及侧支循环的建立作出较佳的判断。对于黑白超难区分的
结节性硬化、
弥漫性肝癌,可利于短波探查、血流波谱探查作出鉴别诊断。
对于肝内良恶性
占位病变的鉴别,
囊肿及各种动静脉瘤的鉴别诊断有较佳诊断价值,
原发性肝癌与
继发性肝癌也可通过内部
血供情况对探查作出区分。
彩超运用于肾脏主要用于肾血管病变,如前所述
肾动静脉瘘,当临床表现为间隔性、无痛性
血尿查不出病因者有较强适应征。对于
继发性高血压的常用病因之一──
肾动脉狭窄,彩超基本可明确诊断,当探及狭窄处血流速大于150cm/s时,诊断
准确性达98.6%,而
敏感性则为100%。另一方面也是对
肾癌、
肾盂移行癌及
良性肿瘤的鉴别诊断。
(三)小器官
在小器官当中,彩超较黑白超有明显诊断准确性的主要是甲状腺、
乳腺、眼球,从某方面来说35μm探头不打彩流多普勒已较普通黑白70μm探头清晰很多,对甲状腺病变主要根据甲状腺内部血供情况作出诊断及鉴别诊断,其中
甲亢图像最为典型,具有
特异性,为一“火海征”。而
单纯性甲状腺肿则与正常甲状腺血运相比无明显变化。
亚急性甲状腺炎,
桥本氏甲状腺炎介于两者之间,可借此区别,而通过结节及周围血流情况又可很好地区分
结节性甲状腺肿、
甲状腺腺瘤及
甲状腺癌,所以建议甲状腺诊断不太明确,病人有一定经济承受能力者可做彩超进一步明确诊断。
乳腺彩超主要用于
乳腺纤维瘤及
乳腺癌鉴别诊断,而眼球主要对眼球血管病变有较佳诊断价值。
正因为直肠探查为诊断前列腺最佳方法,所以在此特地提出。此种方法探查时把前列腺分为移行区、中央区、周围区,另一部分前列腺纤维肌肉基质区。移行区包括尿道周围
括约肌的两侧及腹部,为100%的
良性前列腺增生发源地,而正常人移行区只占前列腺大小的5%。中央区为
射精管周围、尖墙指向
精阜,周围区则包括前列腺后部、两侧尖部,为70-80%的癌发源地,而尖部包膜簿甚至消失,形成解剖薄弱区,为
癌症的常见转移通道,为前列腺活检的重点区域。通过直肠探查对各种前列腺
精囊腺疾病有很好的诊断价值,当配合前列腺活检,则基本可明确诊断,而
前列腺疾病,特别是
前列腺癌在中国发病率均呈
上升趋势,前列腺癌在
欧美国家发病率甚至排在
肺癌后面,为第二高发癌症,而腹部探查前列腺基本无法做出诊断,所以建议临床上多运用直肠B超来诊断前列腺疾病能用直肠探查就不用腹部探查。
(五)妇产科
彩超对妇产科主要优点在于良
恶性肿瘤鉴别及
脐带疾病、胎儿先心病及胎盘功能的评估,对于
滋养细胞疾病有较佳的辅助诊断价值,对
不孕症、
盆腔静脉曲张通过血流波谱观察,也可作出黑白超难下的诊断。运用阴道探头较腹部探查又具有一定的优势,它的优越性主要体现在①对
子宫动脉、卵巢血流敏感性、显示率高。②缩短检查时间、获得准确的多普勒波谱。③无需充盈膀胱。④不受体型肥胖、腹部疤痕、
肠腔充气等干扰。⑤借助探头顶端的活动寻找盆腔脏器触痛部位判断盆腔有无粘连。
交通应用
交通警向行进中的车辆发射频率已知的激光(如绿光)同时测量
反射波的频率和波长,根据反射波的频率变化的多少就能知道车辆的速度。装有多普勒
测速仪的
监视器有时就装在路的上方,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印。
航空应用
2014年3月8日马航
MH370失联,17天后,
马来西亚总理纳吉布24日晚临时召开
新闻发布会宣布:“根据最新数据,MH370航班在
印度洋南部终结。”参与失联航班调查的
国际海事卫星组织副总裁麦克洛克林解释说,他们运用多普勒效应理论,结合其他参考因素,在大量
数据分析基础上给出了MH370的最终走向。
相关事件
2014年3月24日10点,马来西亚总理纳吉布召开紧急新闻发布会,他表示,根据新的数据分析,MH370航班在南印度洋坠毁。
国际海事卫星组织24日解释说,他们运用多普勒效应
理论分析马航
MH370航班发出的信号,认为飞机落入南印度洋。