天气系统(weather system),通常是指引起
天气变化和分布的
高压、低压和
高压脊、
低压槽等具有典型特征的
大气运动系统。
气象卫星观测资料表明,大大小小的天气系统是相互交织、相互作用着、在大气运动过程中演变着。
含义
对天气形成具有重要影响的流场、气压场、温度场和湿度场上的特定系统, 或特定天气现象。在流场上有波、气旋、反气旋、切变线、辐合带、台风、急流、飑线、龙卷等; 在气压场上有低压、高压、低压槽、高压脊等; 在温度场上有气团、锋等;在湿度场上有干区、湿舌、露点锋等; 诸气象要素场相结合的有冷高压、热低压、冷槽、暖脊、能量锋等;特定天气现象的天气系统有雷暴、雹暴、云团等。
另一种定义是按照气象要素的空间分布而划分的具有典型特征的大气运动系统(通常指气压空间分布所组成的系统),如高(气)压、低(气)压、
高压脊、低压槽等。有时指风分布的系统,如
气旋环流、
反气旋环流、
切变线等。有时指温度分布的系统,如高温区、低温区、
锋区等。有时指天气现象分布的系统,如
雷暴、
热带云团等。这一要素系统同另一要素系统之间常常有一定的配置关系。
气压系统和风场之间的关系较好:低压和
气旋环流相配置,有时称为低压,有时称为气旋;高压和
反气旋相配置,有时称为高压,有时称为反气旋。气压系统和温度系统也常呈一定配置关系。如:低压和低温区相配置,称为
冷低压或
冷涡;低压和高温区相配置,称为
热低压。气压系统还可同天气现象存在一定配置关系,如雷暴和(小)高压配置,称为
雷暴高压。天气系统可以通过各种
天气图和
卫星云图等分析工具分析出来。
特征尺度
各类天气系统有一定的特征尺度。
空间尺度主要以天气系统的水平尺度的大小来衡量,水平尺度系指天气系统的波长或扰动直径;
时间尺度以天气系统的生命史的时间长短来衡量,
生命史系指天气系统由新生到消亡的生消过程。一般天气系统的水平尺度越大,其时间尺度也越长。
在20世纪40年代以前,地面观测站平均距离约为200~300公里,以此站距观测所得的资料分析出来的高、
低压系统,称为天气系统,21世纪来称为
天气尺度天气系统。20世纪40年代,发展了
高空气象观测(平均站距约为500公里),把从
高空天气图上发现的、波长与
地球半径相当的波动,称为
行星尺度天气系统。
50年代前后,在研究对流性灾害天气时,发现了许多水平范围为一二百公里、几十公里甚至几公里的高、低压系统,统称为
中小尺度天气系统。分析这类系统,必须建立稠密的观测网,比如在美国有所谓的α、β和γ观测网,站距分别约为50公里、8公里和2.5公里。到了70年代,用300~400公里格距进行
数值天气预报时,往往因这种格距太大而分析不出一些具有
对流性天气的系统,影响了预报效果。当格距缩小到100~200公里时,即可分析出来,后来就称这类尺度的系统为
中间尺度天气系统。
大气中各类天气系统的特征尺度相差很大,有大至上万公里的,如
超长波、
副热带高压,也有小至几百米的,如龙卷。按特征尺度大致可分为五类,即:
行星尺度天气系统、
天气尺度天气系统、
中间尺度天气系统、中尺度天气系统和小尺度天气系统。天气系统的分类在国际上也不完全统一。
尺度效应
各类天气系统的空间尺度(水平的和铅直的)和
时间尺度,以及特征的水平风速,都是根据实际观测确定的。但有些量到21世纪初还无法直接观测,只能按
大气动力方程进行计算。在进行
数值计算时,要选择适当的
空间格距,其大小由系统的特征尺度决定,这就是所谓的
尺度效应。比如天气系统的特征铅直
运动速度,可以根据
连续方程由水平尺度和特征水平
风速推算出来。各类天气系统的铅直运动速度有一定的特征数值,如
行星尺度天气系统为10-1厘米/秒,
天气尺度天气系统为10°厘米/秒,
小尺度天气系统的铅直速度约为天气尺度天气系统100倍,即102厘米/秒。
自40年代末期出现尺度分析方法以后,人们常常将完全的
运动方程,按照各类天气系统的特征尺度进行简化,研究各类系统
大气运动的规律以及系统的移动。如研究天气尺度天气系统可以应用准
地转平衡近似和静力学关系,而中小尺度天气系统则不满足地转平衡和
静力平衡。
尺度划分
按照水平范围的大小和生存时间的长短, 可将天气系统分为不同的尺度。尺度划分的标准无统一规定。
一般水平范围10公里左右的天气系统叫小尺度天气系统(龙卷、对流单体等), 生存时间为几分钟到几小时。几十到500公里的叫中尺度天气系统(强雷暴、飑线、海陆风等),生存时间为几小时到十几小时。500~3000公里的叫天气尺度天气系统(锋、气旋、反气旋、台风等),生存时间为一天到几天。3000~10000公里的叫长波天气系统( 阻塞高压、
副热带高压等),生存时间为几天到十几天。10000公里以上的叫超长波天气系统, 生存时间为10天以上。有时把等于及大于天气尺度的天气系统统称为大尺度天气系统。各种不同尺度的天气系统有其不同的特性,他们之间是互相联系、互相制约的,也可互相转化。通过对不同天气系统的特征及其相互关系的分析,来认识天气现象演变的规律,据以制作天气预报。
在
高空天气图上,也有按整个纬圈的
波数来划分天气系统的,通常把波数为1~3的波动称为
超长波,波数为4~8的波动称为
长波,它们都属于
行星尺度天气系统,波数大于8的波动称为短波,相当于
天气尺度天气系统或更小尺度的天气系统。
小系统往往在大系统孕育下发展,小系统成长壮大后又给大系统以反作用。各类天气系统都在一定地理环境中形成和发展,具有一定地理环境特征。如高纬地区终年严寒干燥,则是极地低层冷高压和高空极涡形成的必要条件;低纬地区终年高温潮湿,是
对流性天气系统发展的基础;中纬地区冷、暖气团交绥,则有利于锋面、气旋的形成与发展。因此,常握天气系统结构及其变化规律对预报天气变化和认识气候的形态与特点都是极其重要的。在
天气预报中通过对于各种系统的预报,可以大致预报未来一段时间内的天气变化。许多天气系统的组合,构成大范围的
天气形势,构成半球甚至全球的
大气环流。
演化消亡
天气系统总是处在不断地新生、发展和消亡之中。各种天气系统有不同的生消条件和能量来源。即使特征尺度同属一类的系统,其生消条件和能量来源也有所不同。比如
温带气旋的发展条件,主要由其上空
涡度平流所引起的空气辐散的强弱决定,其能量来源于大气的斜压性所储存的有效势能。台风的发生和维持是由于
热带扰动的
潜热释放,而潜热的释放同热带大气的位势不稳定和
对流不稳定有关,其能量主要来源于海洋供给的
水汽,在
凝结过程中释放的潜热。
强对流性的中小尺度天气系统,主要是由于位势
不稳定空气受到急剧抬升而发展起来的,其能量也是来源于潜热释放。再者,天气系统往往不是闭合的,一个系统的空气经常不停地与周围系统的空气发生交换,随着这种交换,系统与系统之间的动量、能量等进行交换,从而引起系统的生消以及系统之间的相互作用。
一般来说,大的天气系统制约并孕育着小的天气系统的发生和发展,小的天气系统产生后又能对大的天气系统的维持和加强起反馈作用。研究天气系统生消的条件和能量来源,以及研究系统之间的相互作用是天气学的主要任务之一。天气系统与
大气环流之间,不仅在
流型上有关联,而且存在着内在的联系。如大尺度天气系统的活动,通过热量、动量的南北输送以及能量的转换,对于大气环流的维持起着重要作用。而大气环流的热力状况和基本风系的特点,如西风气流的水平变化和垂直变化等,又反过来制约着大尺度天气系统,直接影响着大尺度天气系统的发展。
天气系统组合的演变,如
纬向环流的恢复,波动
群速的传播,以及
行星尺度天气系统的发展等,可以导致相当广泛地区甚至全球范围
大气环流的变化。大气环流的变化又是造成大范围长时期天气变化的条件和机制。从事短期天气预报,可以主要考虑单一的天气系统的变化,而从事中期、
长期天气预报则需要研究天气系统组合的演变规律,需要研究
超长波以至整个大气环流的演变规律。