灰色关联度分析法(Grey Relational Analysis)是灰色
系统分析方法的一种。是根据因素之间
发展趋势的相似或相异程度,亦即“
灰色关联度”,作为衡量因素间关联程度的一种方法。
对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,
灰色关联法,是根据因素之间
发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各自系统(或因素)之间的数值关系。因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态历程分析。
由于系统中各因素的
物理意义不同,导致数据的
量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
所谓关联程度,实质上是曲线间
几何形状的差别程度。因此曲线间差值大小,可作为关联程度的
衡量尺度。对于一个参考数列X0有若干个比较数列X1, X2,…, Xn,各比较数列与参考数列在各个时刻(即曲线中的各点)的关联系数ξ(Xi)可由下列公式算出:
是第二级最小差,记为Δmin。 是两级最大差,记为Δ
max。
因为
关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其
平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:
因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。将m个子序列对同一母序列的关联度按大小
顺序排列起来,便组成了关联序,记为{x},它反映了对于母序列来说各子序列的“优劣”关系。若r0i>r0j,则称{xi}对于同一母序列{x0}优于{xj},记为{xi}>{xj} ;若r0i表1 代表旗县参考数列、比较数列
特征值。
灰色系统理论提出了对各
子系统进行灰色
关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。简言之,灰色关联度法的意义是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。因此,灰色关联度法对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。
灰色关联度可分成“局部性灰色关联度”与“
整体性灰色关联度”两类。主要的差别在于局部性灰色关联度有一参考序列,而整体性灰色关联度是任一序列均可为参考序列。
关联度分析是基于
灰色系统的灰色过程, 进行因素间
时间序列的比较来确定哪些是影响大的主导因素, 是一种动态过程的研究。