电子层,或称电子壳,是
原子物理学中,一组拥有相同主量子数n的原子轨道。电子在
原子中处于不同的
能级状态,粗略说是分层分布的,故电子层又叫
能层。
定义
电子层是原子物理学中,一组拥有相同
主量子数n的
原子轨道。
电子在原子中处于不同的能级状态,粗略说是分层分布的,故电子层又叫能层。电子层可用n(n=1、2、3…)表示,n=1表明第一层电子层(K层),n=2表明第二电子层(L层),依次n=3、4、5时表明第三(M层)、第四(N层)、第五(O层)。一般随着n值的增加,即按K、L、M、N、O…的顺序,电子的
能量逐渐升高、电子离
原子核的平均距离也越来越大。电子层可容纳最多电子的数量为2n2。
电子层不能理解为电子在核外一薄层空间内运动,而是按电子出现几率最大的区域,离核远近来划分的。
亨利·莫斯莱和
巴克拉首次于X-射线吸收研究的实验中发现电子层。巴克拉把它们称为K、L和、M(以英文字母排列)等电子层(最初 K 和 L 电子层名为 B 和 A,改为 K 和 L 的原因是预留空位给未发现的电子层)。这些字母后来被n值1、2、3等取代。
名字起源
电子层的名字起源于
玻尔模式中,电子被认为一组一组地围绕着
核心以特定的距离旋转,所以轨迹就形成了一个壳。
电子在
原子核外排布时,要尽可能使电子的
能量最低。一般来说,离核较近的电子具有较低的
能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s、p、d、f的次序增高的。这两种作用的总结果可以得出电子在
原子核外排布时遵守下列次序:1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d.......
排布原理
当
原子处在
基态时,
原子核外电子的排布遵循三个原则:
泡利不相容原理
我们已经知道,一个电子的运动状态要从4个方面来进行描述,即它所处的电子层、
电子亚层、电子云的伸展方向以及电子的自旋方向。在同一个原子中没有也不可能有运动状态完全相同的两个电子存在,这就是泡利不相容原理所告诉大家的。根据这个规则,如果两个电子处于同一轨道,那么,这两个电子的
自旋方向必定相反。也就是说,每一个轨道中只能容纳两个
自旋方向相反的电子。根据泡利不相容原理,我们得知:s亚层只有1个轨道,可以容纳两个自旋相反的电子;p亚层有3个轨道,总共可以容纳6个电子;d亚层有5个轨道,总共可以容纳10个电子。我们还得知:第一电子层(K层)中只有1s亚层,最多容纳两个电子;
注意: 第二电子层(L层)中包括2s和2p两个亚层,总共可以容纳8个电子(所以8个电子时为稳定状态);
第3电子层(M层)中包括3s、3p、3d三个亚层,总共可以容纳18个电子……第n层总共可以容纳2n2个电子。
能量最低原理
在满足
泡利原理前提下,电子将按照使体系总能量最低的原则填充。量子化学计算结果表明,当有d电子填充时(例如第四周期Ni,3d轨道能E3d=-18.7eV,而E4s=-7.53eV),E3d
E4s,发生了能级“倒置”现象,其他第五、六、七周期也有类似情况。所以不能简单地说电子是按轨道能由低到高的次序填入,但总可以说是按n+0.7l 值由小到大的次序填充。其中n是主量子数,l是角量子数。洪特规则
从
光谱实验结果总结出来的洪特规则有两方面的含义:一是电子在
原子核外排布时,将尽可能分占不同的轨道,且
自旋平行;洪特规则的第二个含义是对于同一个电子亚层,当
电子排布处于
全满(s2、p6、d10、f14)
半满(s1、p3、d5、f7)
全空(s0、p0、d0、f0)时比较稳定。
电子亚层
通过对许多元素的
电离能的进一步分析,人们发现,在同一电子层中,电子的能量还稍有差异,
电子云的形状也不相同。因此电子层仍可进一步分成一个或n个电子亚层。这一点在研究元素的
原子光谱中得到了证实。
电子亚层分别用s、p、d、f等符号表示。不同亚层的电子云形状不同。s亚层的电子云是以
原子核为中心的球形,p亚层的电子云是纺锤形,d亚层为花瓣形,f亚层的电子云形状比较复杂。
同一电子层不同亚层的
能量按s、p、d、f序能量逐渐升高。
K层只包含一个s亚层;L层包含s和p两个亚层;M层包含s、p、d三个亚层;N层包含s、p、d、f四个亚层。
磁量子数m
磁量子数m决定原子轨道(或电子云)在空间的伸展方向。当l给定时,m的取值为从-l到+l之间的一切整数(包括0在内),即0,±1,±2,±3,…± l,共有2l+1个取值。即原子轨道(或电子云)在空间有2l+1个伸展方向。原子轨道(或电子云)在空间的每一个伸展方向称做一个轨道。例如,l=0 时,s电子云呈球形对称分布,没有方向性。m只能有一个值,即m=0,说明s亚层只有一个轨道为s轨道。当l=1时,m可有-1,0,+1三个取值,说明 p电子云在空间有三种取向,即p亚层中有三个以x,y,z轴为对称轴的px,py,pz轨道。当l=2时,m可有五个取值,即d电子云在空间有五种取向, d亚层中有五个不同伸展方向的d轨道.
原子中的电子除绕核作高速运动外,还绕自己的轴作自旋运动。电子的自旋运动用
自旋量子数ms表示。ms 的取值有两个,+1/2和-1/2。说明电子的自旋只有两个方向,即顺时针方向和逆时针方向。通常用“↑”和“↓”表示。
综上所述,原子中每个电子的
运动状态可以用n,l,m,ms四个量子数来描述。主量子数n决定电子出现几率最大的区域离核的远近(或电子层),并且是决定电子
能量的主要因素;角
量子数l决定原子轨道(或电子云)的形状,同时也影响电子的能量;磁
量子数m决定原子轨道(或电子云)在空间的伸展方向;
自旋量子数ms决定
电子自旋的方向。因此四个
量子数确定之后,电子在核外空间的运动状态也就确定了。
主量子数n 1 2 3 4
电子层 K L M N
角量子数l 0 1 2 3
电子亚层 s p d f
每个亚层中轨道数目 1 3 5 7
每个亚层最多容纳电子数 2 6 10 14
相关关系
元素周期表特征
在
元素周期表上每一横行叫做周期元素在那个周期是元素的电子层数决定的!所以元素周期表只有7个周期。
在元素周期表上每一纵行叫做族元素在那个族是元素的电子层的
最外层电子数决定的!但上述规律也并不是完全适用于所有元素,
副族元素中就有原子不符合此规律,如第46号元素钯位于第五周期却只有4个电子层
(化学元素表是
门捷列夫的重要成就,我也顺便介绍一下他。
俄罗斯化学家门捷列夫(1834.2.8~1907.2.2),生在
西伯利亚。他从小热爱劳动,喜爱大自然,学习勤奋。
元素周期表产生
1860年门捷列夫在为著作《化学原理》一书考虑写作计划时,深为无机化学的缺乏系统性所困扰。于是,他开始搜集每一个已知元素的性质资料和有关数据,把前人在实践中所得成果,凡能找到的都收集在一起。人类关于元素问题的长期实践和认识活动,为他提供了丰富的材料。他在研究前人所得成果的基础上,发现一些元素除有特性之外还有共性。例如,已知卤素元素的氟、氯、溴、碘,都具有相似的性质;
碱金属元素锂、钠、钾暴露在空气中时,都很快就被氧化,因此都是只能以化合物形式存在于
自然界中;有的金属例铜、银、金都能长久保持在空气中而不被腐蚀,正因为如此它们被称为贵金属。
于是,门捷列夫开始试着排列这些元素。他把每个元素都建立了一张长方形纸板卡片。在每一块长方形纸板上写上了元素符号、原子量、元素性质及其化合物。然后把它们钉在实验室的墙上排了又排。经过了一系列的排队以后,他发现了元素化学性质的规律性。
因此,当有人将门捷列夫对
元素周期律的发现看得很简单,轻松地说他是用玩扑克牌的方法得到这一伟大发现的,门捷列夫却认真地回答说,从他立志从事这项探索工作起,一直花了大约20年的功夫,才终于在1869年发表了元素周期律。他把
化学元素从杂乱无章的迷宫中分门别类地理出了一个头绪。此外,因为他具有很大的勇气和信心,不怕名家指责,不怕嘲讽,勇于实践,敢于宣传自己的观点,终于得到了广泛的承认。为了纪念他的成就,人们将美国化学家希伯格在1955年发现的第101号新元素命名为Mendelevium,即“钔”。)
其它
介绍
原子核外的电子总是有规律的排布在各自的轨道上。原子轨道的种类主页面:原子轨道作为
薛定谔方程的解,原子轨道的种类取决于主量子数(n)、角量子数(l)和
磁量子数(ml)。其中,主量子数就相当于电子层,角量子数相当于亚层,而磁量子数决定了原子轨道的伸展方向。另外,每个原子轨道里都可以填充两个电子,所以对于电子,需要再加一个
自旋量子数 (ms),一共四个量子数。n可以取任意正整数。在n取一定值时,l可以取小于n的
自然数,ml可以取±l。不论什么轨道,ms都只能取±1/2,两个
电子自旋相反。因此,s轨道(l=0)上只能填充2个电子,p轨道(l=1)上能填充6个,一个亚层填充的
电子数为4l+2。具有角量子数0、1、2、3的轨道分别叫做s轨道、p轨道、d轨道、f轨道。之后的轨道名称,按字母顺序排列,如l=4时叫g轨道。排布的规则电子的排布遵循以下三个规则:
能量最低原理整个体系的能量越低越好。一般来说,新填入的电子都是填在
能量最低的空轨道上的。Hund规则电子尽可能的占据不同轨道,
自旋方向相同。
Pauli不相容原理:在同一体系中,没有两个电子的四个量子数是完全相同的。同一亚层中的各个轨道是简并的,所以电子一般都是先填满能量较低的亚层,再填能量稍高一点的亚层。各亚层之间有能级交错现象:1s、2s2p、3s3p、4s3d4p、5s4d5p、6s4f5d6p、7s5f6d7p、8s5g6f7d8p;有几个原子的排布不完全遵守上面的规则,如:Cr:[Ar]3d54s1;这是因为同一亚层中,全充满、半充满、全空的状态是最稳定的。这种方式的整体能量比3d44s2要低,因为所有亚层均处于稳定状态。排布示例以铬为例:铬原子核外有24个电子,可以填满1s至4s所有的轨道,还剩余4个填入3d轨道:1s22s22p63s23p64s23d4;由于半充满更稳定,排布发生变化:1s22s22p63s23p64s13d5;除了6个价电子之外,其余的电子一般不发生化学反应,于是简写为: [Ar]4s13d5;这里,具有氩的电子构型的那18个电子称为“原子实”。一般把主量子数小的写在前面:[Ar]3d54s1电子构型对性质的影响:主页面:元素周期律;电子的排布情况,即电子构型,是元素性质的决定性因素。为了达到全充满、半充满、全空的稳定状态,不同的原子选择不同的方式。具有同样价电子构型的原子,理论上得或失电子的趋势是相同的,这就是同一族元素性质相近的原因;同一族元素中,由于周期越高,价电子的能量就越高,就越容易失去。元素周期表中的区块是根据价电子构型的显著区别划分的。不同区的元素性质差别同样显著:如s区元素只能形成简单的离子,而d区的过渡金属可以形成配合物。
排布规律
E1s(n-1)d>(n-2)f>ns根据这个排电子所在的原子轨道离核越近,电子受原子核吸收力越大,电子的能量越低。反之,离核越远的轨道,电子的能量越高,这说明电子在不同的原子轨道上运动时其能量可能有所不同。原子中电子所处的不同能量状态称原子轨道的能级。根据原子轨道能级的相对高低,可划分为若干个电子层,K、L、M、N、O、P、Q…. 同一电子层又可以划分为若干个电子亚层,如s、p、d、f等。每个电子亚层包含若干个原子轨道。原子轨道的能级可以通过光谱实验确定,也可以应用薛定谔方程求得。原子轨道的能级与其所在电子的电子层及电子亚层有关,还与原子序数有关。
1、不同电子层能级相对高低K
排列特征
从
过渡元素在周期表中的位置看,很容易判断它们的次外层电子并不饱和,这样使得它们的
化合价繁多,性质也很复杂。通常
过渡元素都有亚正价,比如说铁的二价正离子就叫
亚铁离子,铜的一价正离子就叫
亚铜离子。这些亚价的正离子都不是很稳定,在有氧化剂的存在下都会被氧化,成为高价
金属离子。而且这些
过渡元素几乎都可以成为
酸根的
主元素,比如铁
酸根,
锰酸根和
高锰酸根等。在这种高价态
过渡元素形成的酸中,由于
过渡金属最外层和次外层的电子全部失去,这些酸大部分都有强
氧化性,比如
重铬酸高锰酸等。在化学推断题中,经常使用这些课本中不常见的氧化剂,多了解它们的性质对今后做题很有帮助。在第三
主族到第六主族里都有
金属元素存在,它们是因为随着
质子数增多,都显示了或多或少的
金属性。在元素周期表中
非金属元素都是写在绿框里的,很醒目。非
金属元素都一得电子,一般在与金属元素形成的化合物中显负价。但这不代表它们不显正价。在遇到极强的氧化剂时,也会显正价,比如
七氧化二氯。这些正价的
氧化物溶于水也会形成相应的酸。这些以高价非金属元素为主元素的酸一般也都有强
氧化性,象
氯酸,
浓硫酸。但是,由于氟的
非金属性最强,没有氧化剂可以把它氧化,所以氟没有正价。请注意在金属与非金属交界的地方,有一些元素,它们呈梯形排列,有铝锗锑和硼硅砷碲。它们兼有
金属性和
非金属性。这是由它们所在的特殊位置决定的。它们正处在金属与非金属交界处,是元素由金属向非金属过渡的中间元素。仔细观察镧系和
锕系元素。这些元素之所以被排在周期表的同一个格里,是因为它们的性质很相似。它们最外层电子层
电子数相同,电子的变化都发生在次外层或倒数第三层。科学家们为了
周期。
能量
如果没有外界能量输入的话,电子会尽可能降低自身能量。能量低的电子在离核较近的区域运动,能量高的电子在离核较远的区域运动。而电子总是尽先排布在能量最低的电子层里。也就是说,在通常情况下,低层有了空位,高层的电子会释放光子降低能量填补到低层去(在外面跑大圈是很累的),
主量子数n
n相同的电子为一个电子层,电子近乎在同样的空间范围内运动,故称主量子数。
原子核外电子的排布
原子核外电子的运动特征
①速度:速度非常快,接近光速;
②没有固定的轨迹
意义:用来表示电子在一定时间内在核外空间各处出现机会的模型。
电子云密度大的地方表示电子出现的几率大。
核外电子的排布规律
电子层的划分
电子层(用n表示):1、2、3、4、5、6……
电子层的符号:K、L、M、N、O、P ……
各电子层最多容纳的电子数是2n2个(表示电子层)。最外层电子数不超过8个(K 层是最外层时,最多不超过2个),次外层电子数目不超过18个 ,倒数第三层不超过32个。
核外电子总是先排布在能量最低的电子层,然后由里向外从能量低的电子层逐步向能量高的电子层排布。