耦合模理论(coupled-mode theory)是指研究两个或多个
电磁波模式间
耦合的
一般规律的理论。
耦合可以发生在同一波导(腔体)中不同的
电磁波的模式之间,也可以发生在不同波导的电磁波模式之间。
研究两个或多个
电磁波模式间
耦合的
一般规律的理论,又称
耦合波理论。广义地说,它是研究两个或多个波动之间耦合的普遍理论。耦合可以发生在同一波导(或腔体)中不同的电磁波模式之间,也可以发生在不同波导(或腔体)的电磁波模式之间。通常,耦合发生在同一类波动之间,但也可以发生在不同类型的波动之间,例如
行波管中的两个电磁波模式与两个
空间电荷模式之间的耦合。
J.R.皮尔斯在40年代研究
微波电子管时首先提出
耦合模概念,随后S.E.米勒和S.A.谢昆诺夫发展了这一概念,并初步建立了波导模式耦合的
基本理论。在50~60年代,耦合模理论已成功地用于分析
参量放大器、
多模圆波导传输和各向导性
媒质填充波导等问题,中国科学家
黄宏嘉提出耦合本地简正模的广义理论,深化了耦合模概念并简化了分析方法。70年代以来,耦合模理论又成功地应用于
光波导问题,对
光纤通信和光纤传感有重要的实际意义。
式中Ai为耦合系统中第i个模的幅度;在耦合
传输线问题中Kij=jβi,在耦合振荡问题中Kij=jωi,βi和ωi分别为模式i的
相移常数和
振荡频率;Kij(i厵j)为
耦合系数,在传输线问题中是
空间坐标z的函数,在振荡问题中是时间t的函数,是单位
耦合长度或单位时间内由单位幅度的模j所激发的模i的幅度。将
方程组 (1)写成矩阵形式
耦合模方程的解 根据耦合系数和
边界条件的具体情况得出。耦合能力Qij表示模式i和j之间的耦合强弱。对于
非周期性耦合
可见,即使存在多个模之间的
耦合,仍可以分别考虑每一个模与输入模之间的耦合,从而使问题简化。
通常,强
耦合只发生在两个耦合模式(如1和2)之间,忽略其他耦合模,可将式(1)简化为
图1给出|A1|和|A2|随坐标z的变化的曲线,其中
实线表示β1=β2情况下的解式(7),说明两种模式之间可以实现能量的完全转换;
虚线表示常
耦合和β1厵β2情况下的解,可见,这时不可能实现能量的完全转换。
耦合模方程的不同形式 为了导出耦合模方程,需要将
麦克斯韦方程中的场按
正交函数集展开,采用不同的正交函数集能得到不同的耦合模方程。例如,波导中的正交函数集对应于其全部
电磁波模式(对于
开波导还应包括
辐射模)。凡沿波导独立传输而不存在耦合的都称为
简正模,耦合模则是非简正模。
不均匀波导中的
电磁波可以按参考波导中的简正模集展开,选择不同的参考波导,对应有不同的简正模集,得到不同的耦合模方程。
以变截面波导为例(图3),用虚线表示不同截面位置处的三种参考波导所分别对应的三组简正模:理想模、本地模和超本地模。与理想模对应的参考波导是均匀波导,其截面形状和大小与实际波导输入端处一致;与本地模对应的参考波导是截面形状和大小与观察点处实际波导相一致的均匀波导;与超本地模对应的参考波导是形状与观察点处实际波导一致、且两者
纵剖面边界线相切的
喇叭形波导。后两组模式随观察点位置而改变,其模式特性主要由“本地”特性决定。
耦合模
方程式 (1)在系统平均下可转化为耦合功率方程,由此出发研究长距离
导波结构中各种随机
不均匀性对传输特性的影响。这一理论可用来解决
多模光纤传输问题。