摆线,又称
旋轮线、
圆滚线,在
数学中,摆线(Cycloid)被定义为,一个圆沿一条直线运动时,圆边界上一定点所形成的轨迹。它是
一般旋轮线的一种。
别称
摆线是指一个
圆在一条定
直线上滚动时,圆周上一个定点的轨迹,又称
圆滚线、
旋轮线。
圆上定点的初始位置为坐标原点,定直线为x轴。当圆滚动j 角以后,圆上定点从 O 点位置到达P点位置。当圆滚动一周,即 j从O变动2π时,动圆上定点描画出摆线的第一拱。再向前滚动一周, 动圆上定点描画出第二拱,继续滚动,可得第三拱,第四拱……,所有这些拱的形状都是完全相同的 ,每一拱的拱高为2a(即圆的直径),拱宽为2πa(即圆的周长)。
性质
到17 世纪,人们发现摆线具有如下性质:
1.它的长度等于旋转圆直径的 4 倍。尤为令人感兴趣的是,它的长度是 一个不依赖于π的
有理数。
3.圆上描出摆线的那个点,具有不同的速度——事实上,在特定的地方它甚至是静止的。
4.当弹子从一个摆线形状的容器的不同点放开时,它们会同时到达底部。
方程式
x=r*(t-sint); y=r*(1-cost)r为圆的半径, t是圆的半径所经过的弧度(滚动角),当t由0变到2π时,动点就画出了摆线的一支,称为一拱。
历史
摆线最早出现可见于公元 1501 年出版的 C·鲍威尔的一本书中.但在 17 世 纪,大批卓越的数学家(如
伽利略,
帕斯卡,
托里拆利,
笛卡儿,
费尔马, 伍任,
瓦里斯,
惠更斯,
约翰·伯努利,
莱布尼兹,
牛顿等等)热心于研究这一曲线的性质.17 世纪是人们对数学力学和数学运动学爱好的年代,这能解释人们为什么对摆线怀有强烈的兴趣。在这一时期,伴随着许多发现,也出现了众多有关发现权的争议,剽窃的指责,以及抹煞他人工作的现象。这样,作为一种结果,摆线被贴上了引发争议的“
金苹果”和“几何的
海伦” 的标签。
摆线的研究最初开始于
库萨的尼古拉,之后
马兰·梅森也有针对摆线的研究。1599年
伽利略为摆线命名。1634年吉勒斯·德·罗贝瓦勒指出摆线下方的面积是生成它的圆面积的三倍。1658年
克里斯多佛·雷恩也向人们指出摆线的长度是生成它的圆直径的四倍。在这一时期,伴随着许多发现,也出现了众多有关发现权的争议,甚至抹杀他人工作的现象,而因此摆线也被人们称作“几何学中的海伦”(The Helen of Geometers)。
相关故事
时钟
时钟已变成现代人不可或少的必备工具之一,没有时钟,人们将不知时间,许多重要的约会便会错过,当各位在看表的时候,不知可曾想过,时钟里面隐藏了些甚么道理,一砂一世界,许多人们视为理所当然的事都是先民流血流汗一点一滴累积而成的。
在时钟里面到底隐藏了什么东西 将这些理论写出来可是厚厚的一大本呢。回想以前的中世纪航海时代,时间的掌握是关乎全船人生命安危的大事,想要和大海搏斗,时间是不可或缺的因素,古时候是以沙漏水钟来计时,但这些计时工具相当不准确,为了增加船员生存的机会,发明精确的
计时器变成了当时科学界的当务之急。
那时在意大利有一位年轻的科学家伽利略,有一次在
比萨斜塔处意外地发现一个有趣的现象,教堂的吊灯来回摆动时,不管摆动的幅度大还是小,每摆动一次用的时间都相等。当时,他是以自己的心跳脉搏来计算时间的.从此以后,伽利略便废寝忘食的研究起物理和数学来,他曾用自行制的滴漏来重新做
单摆的试验,结果证明了单摆摆动的时间跟摆幅没有关系,只跟单摆摆线的长度有关.这个现象使伽利略想到或许可以利用单摆来制作精确的时钟,但他始终并没有将理想付之实行。
伽利略的发现振奋了科学界,可是不久便发现单摆的
摆动周期也不完全相等。原来,伽利略的观察和实验还不够精确.实际上,摆的摆幅愈大,摆动周期就愈长,只不过这种周期的变化是很小的。所以,如果用这种摆来制作时钟,摆的
振幅会因为摩擦和空气阻力而愈来愈小,时钟也因此愈走愈快。
过了不久,荷兰科学家
惠更斯决定要做出一个精确的时钟来.伽利略的单摆是在一段
圆弧上摆动的,所以我们也叫做圆周摆。惠更斯想要找出一条曲线,使摆沿著这样的曲线摆动时,摆动周期完全与摆幅无关,这群科学家放弃了物理实验,纯粹往数学曲线上去研究,经过不少次的失败,这样的曲线终於找到了,数学上把这种曲线叫做“摆线”,“等时曲线”或“旋轮线”。
动手验证
如果你用硬纸板剪一个圆,在圆的边缘固定一枝铅笔,当这圆沿一条直线滚动时,铅笔便会画出一条摆线来.相信这样的玩具许多人都已经看过玩过,以前的街上,常会看到街边小贩在兜售这种摆线玩具,许多人赞叹摆线的美丽,但却不知摆线与时钟的相关性.钟表店里面那些有钟摆的时钟,都是利用摆线性质制作出来的.由于摆线的发现,使得精确时钟的制作不是梦想.这也使人类科技向前迈进一大步。
基本原理
摆线针轮行星传动中,摆线轮齿廓曲线运用内啮合发生圆产生的短幅外摆线。
有一发生圆(滚圆)半径为rp',基圆半径为rc',基圆内切于发生圆,当发生圆绕基圆作纯滚动,其圆心Op分别处于Op1、Op2、Op3、Op4、Op5、Op6......各位置时,由此固结在发生圆平面上的点M分别经过M1、M2、M3、M4、M5、M6......各位置,由此发生圆周期滚动,发生圆上点M所形成的轨迹曲线即为短幅外摆线。
由以上摆线生成的几何关系 若仍保持以上的内切滚动关系,将基圆和摆线视为
刚体相对于发生圆运动,则形成了摆线图形相对发生圆圆心Op作行星方式的运动,这就是行星摆线传动机构的基本原理。
最速降线
在一个斜面上,摆两条轨道,一条是直线,一条是曲线,起点高度以及终点高度都相同。两个质量、大小一样的小球同时从起点向下滑落,曲线的小球反而先到终点。这是由于曲线轨道上的小球先达到最高速度,所以先到达。然而,两点之间的直线只有一条,曲线却有无数条,那么,哪一条才是最快的呢?伽利略于1630年提出了这个问题,当时他认为这条线应该是一条弧线,可是后来人们发现这个答案是错误的。
1696年,瑞士数学家
约翰·伯努利解决了这个问题,他还拿这个问题向其他数学家提出了公开挑战。牛顿、莱布尼兹、洛比达以及雅克布·伯努利等解决了这个问题。这条最速降线就是一条摆线,也叫旋轮线。
意大利科学家伽利略在1630年提出一个
分析学的基本问题——“一个质点在重力作用下,从一个给定点到不在它垂直下方的另一点,如果不计摩擦力,问沿着什么曲线滑下所需时间最短。”。他说这曲线是圆,可是这是一个错误的答案。
瑞士数学家约翰.伯努利在1696年再提出这个最速降线的问题(problem of brachistochrone),征求解答。次年已有多位数学家得到正确答案,其中包括牛顿、莱布尼兹、洛必达和
伯努利家族的成员。这问题的正确答案是连接两个点上凹的唯一一段旋轮线。
旋轮线与1673年荷兰科学家惠更斯讨论的摆线相同。因为钟表摆锤作一次完全摆动所用的时间相等,所以摆线(旋轮线)又称等时曲线。
看Johann Bernoulli 对
最速降线问题的beautiful解答:
如果使分成的层数n无限地增加,即每层的厚度无限地变薄,则质点的运动便趋于空间A、B两点间质点运动的真实情况,此时折线也就无限增多,其形状就趋近我们所要求的曲线——最速降线.而折线的每一段趋向于曲线的
切线,因而得出最速降线的一个重要性质:任意一点上切线和铅垂线所成的角度的
正弦与该点落下的高度的平方根的比是常数.而具有这种性质的曲线就是摆线.所谓摆线,它是一个圆沿着一条直线滚动(无滑动)时,圆周上任意一
点的轨迹。
因此,最速降线就是摆线,只不过在最速降线问题中,这条摆线是上、下颠倒过来的罢了.
以上便是Johann Bernoulli当时所给最速降线问题的解答.当然,这个解答在理论上并不算十分严谨的.但是,这个解答所蕴含的基本观点的发展,导致了一门新的学科——变分学.最速降线问题的最终而完备的解答,需要用到变分学的知识.
证明式
过原点半径为r的摆线参数方程为
在这里实参数t是在弧度制下,圆滚动的角度。对每一个给出的t,圆心的坐标为(rt, r)。 通过替换解出t可以求的笛卡尔坐标方程为
摆线的第一道拱由参数t在(0, 2π)区间内的点组成。
面积
一条由半径为r的圆所生成的拱形面积可以由下面的参数方程界定:
微分,
于是可以求得
弧长
弧形的长度可以由下面的式子计算出:
日常生活中的摆线
在日常生活中,旋轮线也是常见的。自行车、马车、火车等的车轮上的任一点都随车辆的前进而描绘出美妙的旋轮线。在机械工业上,内外旋轮线则常被选用为齿轮的轮廓曲线的一部份,以保证平滑的接触,等等。