如果三角形两条边的平方和等于第三边的平方,那么这个
三角形就是
直角三角形。最长边所对的角为直角。
内容
勾股定理的逆定理是判断三角形是否为
锐角、直角或
钝角三角形的一个简单的方法。若c为最长边,且a2+b2=c2,则△ABC是
直角三角形。如果a2+b2>c2,则△ABC是
锐角三角形。如果a2+b2<c2则△ABC是钝角三角形。
证法1
根据
余弦定理,在△ABC中,cosC=(a2+b2-c2)÷2ab。
由于a2+b2=c2,故cosC=0;
因为0°<∠C<180°,所以∠C=90°。(证明完毕)
证法2
已知在△ABC中,,求证∠C=90°
⑴若∠C为锐角,设BH=y,AH=x
得x2+y2=c2,
又∵,
∴(A)
但a>y,b>x,∴(B)
(A)与(B)矛盾,∴∠C不为锐角
得
∵,
得
2ay=0
∵a≠0,∴y=0
综上所述,∠C必为直角
证法3
已知在△ABC中,a2+b2=c2,求证△ABC是直角三角形
证明:做任意一个Rt△A'B'C',使其直角边B'C'=a,A'C'=b,∠C'=90°。设A'B'=c'
在Rt△A'B'C'中,由勾股定理得,A'B‘2=B'C'2+A'C'2=a2+b2=c’2
一∵a2+b2=c2,∴c‘=c
在△ABC和A'B'C'中,∵AB=A'B',BC=B'C',AC=A'C',∴△ABC≌△A'B'C'
∴∠C=∠C'=90°
证法4
如图1,已知在△ABC中,设AB=c,AC=b,BC=a,且a2+b2=c2。求证∠ACB=90°
证明:在△ABC内部作一个∠HCB=∠A,使H在AB上。
∵∠B=∠B,∠A=∠HCB
∴△ABC∽△CBH(有两个角对应相等的两个三角形相似)
∴AB/BC=BC/BH,即BH=a2/c
而AH=AB-BH=c-a2/c=(c2-a2)/c=b2/c
∴AH/AC=(b2/c)/b=b/c=AC/AB
∵∠A=∠A
∴△ACH∽△ABC(两边对应成比例且夹角相等的两个三角形相似)
∵∠AHC+∠CHB=∠AHB=180°
∴∠AHC=∠CHB=90°
勾股定理
定理
如果直角三角形两直角边分别为A,B,
斜边为C,那么; 即直角三角形两直角边长的平方和等于斜边长的平方。古埃及人用这样的方法
画直角。
如果三角形的三条边A,B,C满足,还有变形公式:,如:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方那么这个三角形是直角三角形。(称勾股定理的逆定理)
来源
毕达哥拉斯树是一个基本的
几何定理,传统上认为是由
古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“
百牛定理”。
在中国,《
周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为
商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。法国和
比利时称为
驴桥定理,
埃及称为埃及三角形。中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 常用
勾股数组(3,4,5);(6,8,10);(5,12,13);(8,15,17) ;(7,24,25) 有关勾股定理书籍 《
数学原理》
人民教育出版社 《探究勾股定理》
同济大学出版社 《勾股书籍》 新世纪出版社 《九章算术一书》 《
几何原本》 (原著:
欧几里得)
人民日报出版社毕达哥拉斯树
毕达哥拉斯树是由毕达哥拉斯根据
勾股定理所画出来的一个可以无限重复的图形。又因为重复数次后 的形状好似一棵树,所以被称为毕达哥拉斯树。 直角三角形两个直角边平方的和等于斜边的平方。 两个相邻的小
正方形面积的和等于相邻的一个大正方形的面积。 利用不等式A2+B2≥2AB可以证明下面的结论: 三个正方形之间的三角形,其面积
小于等于大正方形面积的四分之一,
大于等于一个小正方形面积的二分之一
常见的勾股数
注:3K,
4K,5K即3,4,5的同一倍数 勾股数 A=s2-t2 B=2st C=s2+t2 其中s>t,且s,t为
正整数。
勾股弦的比例
(一个锐角为30°的直角三角形)(
等腰直角三角形)
最早应用
从很多
泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例。例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的
木梁(AB)竖直靠在墙上,上端(A)下滑一米至D。问下端(C)离墙根(B)多远?”他们解此题就是用了勾股定理, 设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米 ∵a=√[l2-(l-h)2]=√[52-(5-1)2]=3米,∴
三角形BDC正是以3、4、5为边的勾股三角形。《
周髀算经》中勾股定理的公式与证明 《周髀算经》
算经十书之一。约
成书于公元前二世纪,原名《周髀》,它是中国最古老的天文学著作,主要阐明当时的
盖天说和四分历法。唐初规定它为
国子监明算科的教材之一,故改名《周髀算经》。 首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”(《周髀算经》上卷二) 而
勾股定理的证明呢,就在《周髀算经》上卷一—— 昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?” 商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。” 周公对古代
伏羲(包牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来。于是商高以勾股定理的证明为例,解释数学知识的由来。 《周髀算经》证明步骤
“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。 “故折矩①,以为勾广三,股修四,径隅五。”:开始
做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五)。 “②既方之,外半其一矩,环而共盘,得成三四五。”:这就是关键的
证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(
曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。 “两矩共长③二十有五,是谓积矩。”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个
三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和。因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方。 注意: ① 矩,又称曲尺,L型的木匠工具,由长短两根木条组成的直角。古代“矩”指L型曲尺,“矩形”才是“矩”衍生的长方形。 ② “既方之,外半其一矩”此句有争议。清代四库全书版定为“既方其外半之一矩”,
而之前版本多为“既方之外半其一矩”。经陈良佐、李国伟、
李继闵、
曲安京等学者研究,“既方之,外半其一矩”更符合逻辑。 ③ 长指的是面积。古代对不同维度的
量纲比较,并没有发明新的术语,而统称“长”。
赵爽注称:“两矩者, 勾股各自乘之实。共长者,并实之数。 由于年代久远,周公
弦图失传,传世版本只印了
赵爽弦图(
造纸术在汉代才发明)。所以某些学者误以为商高没有证明(只是说了一段莫名其妙的话),后来赵爽才给出证明。 其实不然,摘录赵爽注释《
周髀算经》时所做的《
勾股圆方图》——“勾股各自乘, 并之为弦实,开方除之即弦。案:弦图又可以勾股相乘为朱实二, 倍之为朱实四,以勾股之差自相乘为中黄实, 加差实亦成弦实。” 赵爽弦图
注意“案”中的“弦图又可以”、“亦成弦实”,“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明,于是他给出了新的证明。 下为赵爽证明——
青朱出入图三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青方并成弦方。依其面积关系有A2+B2=C2.由于朱方、青方各有一部分在玄方内,那一部分就不动了。 以勾为边的的正方形为朱方,以股为边的正方形为青方。以盈补虚,只要把朱方(A2)的I移至I′,青方的Ⅱ移至Ⅱ′,Ⅲ移至Ⅲ′,则刚好拼好一个以弦为边长的正方形(C……2).由此便可证得a2+b2=c2。
加菲尔德
1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国
俄亥俄州共和党议员加菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,加菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个
直角三角形。于是加菲尔德 便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条
直角边分别为3和4,那么斜边
长为多少呢?”加菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的
斜边长又是多少?”加菲尔德不假思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”加菲尔德一时语塞,无法解释了,心里很不是滋味。加菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的
证明方法。 如下: 解:在网格内,以两个直角边为边长的小
正方形面积和,等于以斜边为边长的正方形面积。
勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方, a^2+b^2=c^2; 说明:中国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理称为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。 举例:如直角三角形的两个直角边分别为3、4,则斜边c的平方;= a的平方+b的平方=9+16=25即c=5 则说明斜边为5。
多种证明
这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的Pythagorean Proposition(《毕达哥拉斯命题》)一书中总共提到367种证明方式。 有人会尝试以
三角恒等式(例如:正弦和
余弦函数的
泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。
证法1
作四个全等的直角三角形,把它们拼成那样的一个
多边形,使D、E、F在一条直线上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180°―90°= 90°
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形。
∴ ∠ABC + ∠CBE = 90°
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90° 即 ∠CBD= 90°
又∵ ∠BDE = 90°,∠BCP = 90°, BC = BD = a.
∴ BDPC是一个边长为a的正方形。
同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则
证法2
作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,做一个边长为c的正方形。斜边长为c. 再把它们拼成多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作
BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N.
∵ ∠BCA = 90°,QP∥BC,
∴ ∠MPC = 90°,
∵ BM⊥PQ,
∴ ∠BMP = 90°,
∴ BCPM是一个矩形,即∠MBC = 90°。
∵ ∠QBM + ∠MBA = ∠QBA = 90°, ∠ABC + ∠MBA = ∠MBC = 90°,
∴ ∠,
又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即
证法3
作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成多边形. 分别以CF,AE为边长做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直线上,
∵CJ=CF=a,CB=CD=c, ∠CJB = ∠CFD = 90°,
∴RtΔCJB ≌ RtΔCFD , 同理,RtΔABG ≌ RtΔADE,
∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
∴∠ABG = ∠BCJ,
∵∠BCJ +∠CBJ= 90°,
∴∠ABG +∠CBJ= 90°,
∵∠ABC= 90°,
∴G,B,I,J在同一直线上, 。
证法4
作三个边长分别为a、b、c的三角形,把它们拼成形状,使H、C、B三点在一条直线上,连结 BF、CD. 过C作CL⊥DE, 交AB于点M,交DE于点L.
∵ AF = AC,AB = AD, ∠FAB = ∠GAD,
∵ ΔFAB的面积等于, ΔGAD的面积等于矩形ADLM 的面积的一半,
∴ 矩形ADLM的面积 =. 同理可证,矩形MLEB的面积 =.
∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积
∴ 即
证法5
《
几何原本》中的证明 在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。设△ABC为一直角三角形,其中A为直角。从A点划一直线至
对边,使其垂直于对边上的正方形。此
线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。 在正式的证明中,我们需要四个辅助定理如下: 如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(
SAS定理) 三角形面积是任一同底同高之
平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。证明的概念为:把上方的两个正方形转换成两个同等面积的平行
四边形,再旋转并转换成下方的两个同等面积的长方形。 其证明如下: 设△ABC为一直角三角形,其直角为CAB。其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。画出过点A之BD、CE的
平行线。此线将分别与BC和DE直角相交于K、L。分别连接CF、AD,形成两个三角形BCF、BDA。∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。因此四边形 BDLK 必须有相同的面积 BAGF = AB2;。同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC2;。把这两个结果相加, AB2;+ AC2;; = BD×BK + KL×KC。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB2;+ AC2;= BC2;。此证明是于欧几里得《几何原本》一书第1.47节所提出的
Rt△ABC中,∠ABC=90°,BD是斜边AC上的高 通过证明三角形相似则有
射影定理如下:
⑴(BD)2;=AD·DC,
⑵(AB)2;=AD·AC ,
⑶(BC)2;=CD·AC。 由公式⑵+⑶得:(AB)2;+(BC)2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)2;, 即 (AB)2;+(BC)2;=(AC)2,这就是勾股定理的结论。
证法7
在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角
三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子: 4×(ab/2)+(b-a)2;=c2; 化简后便可得:a2;+b2;=c2; 亦即:c=(a2;+b2;)1/2
勾股定理的别名 勾股定理,是
几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在
高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个
文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。 中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为
勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角
三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。 在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。 在陈子后一二百年,
希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,
毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”. 前任美国第二十届总统
伽菲尔德证明了勾股定理(1876年4月1日)。
1 周髀算经,
文物出版社,1980年3月, 据宋代嘉定六年本
影印,1-5页。
2. 陈良佐:周髀算经勾股定理的证明与
出入相补原理的关系。刊於《汉学研究》, 1989年第7卷第1期,255-281页。
3. 李国伟: 论「
周髀算经」“商高曰数之法出于圆方”章。刊於《第二届科学史研讨会汇刊》, 台湾,1991年7月, 227-234页。
4. 李继闵:商高定理辨证。刊於《
自然科学史研究》,1993年第12卷第1期,29-41页。
5. 曲安京: 商高、赵爽与
刘徽关於勾股定理的证明。刊於《
数学传播》20卷, 台湾,1996年9月第3期, 20-27页
证法8
达芬奇的证法
证明: 第一张中多边形ABCDEF的面积S1=S正方形ABOF+S正方形CDEO+2S△BCO=
OF2+OE2+OF·OE 第三张中多边形A'B'C'D'E'F'的面积S2=S正方形B'C'E'F'+2△C'D'E'=E'F'2+C'D'·D'E' 因为S1=S2
所以OF2+OE2+OF·OE=E'F'2+C'D'·D'E'
又因为C'D'=CD=OE,D'E'=AF=OF
所以OF2+OE2=E'F'2
因为E'F'=EF
所以OF2+OE2=EF2 勾股定理得证。
证法9
可以得到一个矩形和三个三角形,推导公式如下:
b (a + b)= 1/2c2; + ab + 1/2(b + a)(b - a) 矩形面积 =(中间三角形)+(下方)2个直角三角形+(上方)1个直 角三角形。 (简化) 2ab + 2b2;= c2; + b2;- a2;+ 2ab 2b2; - b2;+ a2;= c2; a2; + b2;= c2;
注:根据加菲尔德图进一步得到的图形。