高中数学课程标准
人民教育出版社出版发行的数学教程
《高中数学课程标准》是由教育部编写,人民教育出版社出版发行的一本数学教程。数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。
图书前言
数学教育作为教育的组成部分,在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面、在推动社会进步和发展的进程中起着重要的作用。在现代社会中,数学教育又是终身教育的重要方面,它是公民进一步深造的基础,是终身发展的需要。数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。
数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
课程性质
高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。
高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。
高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。
高中数学课程是学习高中物理、化学、技术等课程和进一步学习的基础。同时,它为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。
课程理念
1. 构建共同基础,提供发展平台
高中教育属于基础教育。高中数学课程应具有基础性,它包括两方面的含义:第一,在义务教育阶段之后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养;第二,为学生进一步学习提供必要的数学准备。高中数学课程由必修系列课程和选修系列课程组成,必修系列课程是为了满足所有学生的共同数学需求;选修系列课程是为了满足学生的不同数学需求,它仍然是学生发展所需要的基础性数学课程。
2. 提供多样课程,适应个性选择
高中数学课程应具有多样性与选择性,使不同的学生在数学上得到不同的发展。
高中数学课程应为学生提供选择和发展的空间,为学生提供多层次、多种类的选择,以促进学生的个性发展和对未来人生规划的思考。学生可以在教师的指导下进行自主选择,必要时还可以进行适当地转换、调整。同时,高中数学课程也应给学校和教师留有一定的选择空间,他们可以根据学生的基本需求和自身的条件,制定课程发展计划,不断地丰富和完善供学生选择的课程。
3. 倡导积极主动、勇于探索的学习方式
学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程。同时,高中数学课程设立“数学探究”“数学建模”等学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利的条件,以激发学生的数学学习兴趣,鼓励学生在学习过程中,养成独立思考、积极探索的习惯。高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识
4. 注重提高学生的数学思维能力
高中数学课程应注重提高学生的数学思维能力,这是数学教育的基本目标之一。人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想像、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。这些过程是数学思维能力的具体体现,有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断。数学思维能力在形成理性思维中发挥着独特的作用。
5. 发展学生的数学应用意识
20世纪下半叶以来,数学应用的巨大发展是数学发展的显著特征之一。当今知识经济时代,数学正在从幕后走向台前,数学和计算机技术的结合使得数学能够在许多方面直接为社会创造价值,同时,也为数学发展开拓了广阔的前景。我国的数学教育在很长一段时间内对于数学与实际、数学与其他学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。近几年来,我国大学、中学数学建模的实践表明,开展数学应用的教学活动符合社会需要,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野。
高中数学课程应提供基本内容的实际背景,反映数学的应用价值,开展“数学建模”的学习活动,设立体现数学某些重要应用的专题课程。高中数学课程应力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。
6. 与时俱进地认识“双基”
我国的数学教学具有重视基础知识教学、基本技能训练和能力培养的传统,新世纪的高中数学课程应发扬这种传统。与此同时,随着时代的发展,特别是数学的广泛应用、计算机技术和现代信息技术的发展,数学课程设置和实施应重新审视基础知识、基本技能和能力的内涵,形成符合时代要求的新的“双基”。例如,为了适应信息时代发展的需要,高中数学课程应增加算法的内容,把最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“双基异化”的倾向。
7. 强调本质,注意适度形式化
形式化是数学的基本特征之一。在数学教学中,学习形式化的表达是一项基本要求,但是不能只限于形式化的表达,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里。数学的现代发展也表明,全盘形式化是不可能的。因此,高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质。数学课程要讲逻辑推理,更要讲道理,通过典型例子的分析和学生自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法,追寻数学发展的历史足迹,把数学的学术形态转化为学生易于接受的教育形态。
8. 体现数学的文化价值
数学是人类文化的重要组成部分。数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,高中数学课程提倡体现数学的文化价值,并在适当的内容中提出对“数学文化”的学习要求,设立“数学史选讲”等专题。
9. 注重信息技术与数学课程的整合_
现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等方面产生深刻的影响。高中数学课程应提倡实现信息技术与课程内容的有机整合(如把算法融入到数学课程的各个相关部分),整合的基本原则是有利于学生认识数学的本质。高中数学课程应提倡利用信息技术来呈现以往教学中难以呈现的课程内容,在保证笔算训练的前提下,尽可能使用科学型计算器、各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。
10. 建立合理、科学的评价体系
现代社会对人的发展的要求引起评价体系的深刻变化,高中数学课程应建立合理、科学的评价体系,包括评价理念、评价内容、评价形式和评价体制等方面。评价既要关注学生数学学习的结果,也要关注他们数学学习的过程;既要关注学生数学学习的水平,也要关注他们在数学活动中所表现出来的情感态度的变化。在数学教育中,评价应建立多元化的目标,关注学生个性与潜能的发展。例如,过程性评价应关注对学生理解数学概念、数学思想等过程的评价,关注对学生数学地提出、分析、解决问题等过程的评价,以及在过程中表现出来的与人合作的态度、表达与交流的意识和探索的精神。对于数学探究、数学建模等学习活动,要建立相应的过程评价内容和方法。
设计思路
高中数学课程力求将教育改革的基本理念与课程的框架设计、内容确定以及课程实施有机地结合起来。
高中数学课程框架
对学生选课的建议
学生的兴趣、志向与自身条件不同,不同高校、不同专业对学生数学方面的要求也不同,甚至同一专业对学生数学方面的要求也不一定相同。随着时代的发展,无论是在自然科学、技术科学等方面,还是在人文科学、社会科学等方面,都需要一些具有较高数学素养的学生,这对于社会、科学技术的发展都具有重要的作用。据此,学生可以选择不同的课程组合,选择以后还可以根据自身的情况和条件进行适当的调整。以下提供课程组合的几种基本建议。
1.学生完成10个学分的必修课程,在数学上达到高中毕业要求。
2.在完成10个必修学分的基础上,希望在人文、社会科学等方面发展的学生,可以有两种选择。一种是,在系列1中学习选修1-1和选修1-2,获得4学分;在系列3中任选2个专题,获得2学分,共获得16学分。另一种是,如果学生对数学有兴趣,并且希望获得较高数学素养,除了按上面的要求获得16学分,同时在系列4中获得4学分,总共获得20学分。
3.希望在理工(包括部分经济类)等方面发展的学生,在完成10个必修学分的基础上,可以有两种选择。一种是,在系列2中学习选修2-1,选修2-2和选修2-3,获得6学分;在系列3中任选2个专题,获得2学分;在系列4中任选2个专题,获得2学分,总共取得20学分。另一种是,如果学生对数学有兴趣,希望获得较高数学素养,除了按上面的要求获得20学分,同时在系列4中选修4个专题,获得4学分,总共获得24学分。
课程的组合具有一定的灵活性,不同的组合可以相互转换。学生作出选择之后,可以根据自己的意愿和条件向学校申请调整,经过测试获得相应的学分即可转换。
课程目标
高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1. 获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2. 提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3. 提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4. 发展数学应用意识创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5. 提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6. 具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义历史唯物主义世界观。
内容标准
必修课程
必修课程是整个高中数学课程的基础,包括5个模块,共10学分,是所有学生都要学习的内容。其内容的确定遵循两个原则:一是满足未来公民的基本数学需求;二是为学生进一步的学习提供必要的数学准备。
5个模块的内容为:
数学2:立体几何初步、平面解析几何初步。
数学3:算法初步、统计概率
数学5:解三角形数列不等式
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
向量是近代数学最重要和最基本的概念之一,是沟通几何、代数、三角等内容的桥梁,它具有丰富的实际背景和广泛的应用。
现代社会是一个信息化的社会,人们常常需要根据所获取的数据提取信息,做出合理的决策,在必修课程中将学习统计与概率的基本思想和基础知识,它们是公民的必备常识。
算法是一个全新的课题,已经成为计算科学的重要基础,它在科学技术和社会发展中起着越来越重要的作用。算法的思想和初步知识,也正在成为普通公民的常识。在必修课程中将学习算法的基本思想和初步知识,算法思想将贯穿高中数学课程的相关部分。
必修课程的呈现力求展现由具体到抽象的过程,努力体现数学知识中蕴涵的基本思想方法和内在联系,体现数学知识的发生、发展过程和实际应用。教师和教材编写者应根据具体内容在适当的地方(如统计、简单线性规划等)安排一些实习作业。
选修课程
对于选修课程,学生可以根据自己的兴趣和对未来发展的愿望进行选择。选修课程由B,C,D,E,F系列课程组成。
◆B系列课程:由B1,B2两个模块组成。
B1:常用逻辑用语、圆锥曲线与方程、导数及其应用; B2:统计案例、推理与证明、数系扩充与复数的引入、框图。
◆C系列课程:由C1,C2,C3三个模块组成。
C1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何; C2:导数及其应用、数系的扩充与复数的引入; C3:计数原理、统计、概率。
◆D系列课程(文化系列课程):由D1,D2,D3,D4等4个专题组成。
D1:数学史选讲; D2:现实社会中的数学; D3:中学数学思想方法; D4:数学问题集锦。
◆E系列课程(应用系列课程):由E1,E2,E3,E4等4个专题组成。
E1:优选法与实验设计; E2:统筹法与图论;E3:风险与决策;E4:数字电路设计与代数运算。
◆F系列课程(拓展系列课程):由F1,F2,F3,F4,F5,F6,F7,F8,F9,F10等10个专题组成。
F1:几何证明; F2:不等式; F3:参数方程与极坐标;F4:矩阵与变换; F5:数列与差分; F6:尺规作图与数域扩充; F7:欧拉公式与闭曲面分类;F8:初等数论初步; F9:对称变换与群;F10:球面几何与非欧几何
实施建议
教学建议
新一轮数学课程改革从理念、内容到实施,都有较大变化,要实现数学课程改革的目标,教师是关键。教师应首先转变观念,充分认识数学课程改革的理念和目标,以及自己在课程改革中的角色和作用。教师不仅是课程的实施者,而且也是课程的研究、建设和资源开发的重要力量。教师不仅是知识的传授者,而且也是学生学习的引导者、组织者和合作者。为了更好地实施新课程,教师应积极地探索和研究,提高自身的数学专业素质和教育科学素质。 数学教学要体现课程改革的基本理念,在教学设计中充分考虑数学的学科特点,高中学生的心理特点,不同水平、不同兴趣学生的学习需要,运用多种教学方法和手段,引导学生积极主动地学习,掌握数学的基础知识和基本技能以及它们所体现的数学思想方法,发展应用意识创新意识,对数学有较为全面的认识,提高数学素养,形成积极的情感态度,为未来发展和进一步学习打好基础。在教学中应该把握好以下几个方面。 1. 以学生发展为本,指导学生合理选择课程、制定学习计划 为了体现时代性、基础性、选择性、多样性的基本理念,使不同学生学习不同的数学,在数学上获得不同的发展,高中数学课程设置了必修系列和四个选修系列的课程。教学中,要鼓励学生根据国家规定的课程方案和要求,以及各自的潜能和兴趣爱好,制定数学学习计划,自主选择数学课程,在学生选择课程的过程中,教师要根据学生的不同基础、不同水平、不同志趣和发展方向给予具体指导。 2. 帮助学生打好基础,发展能力 教师应帮助学生理解和掌握数学基础知识、基本技能,发展能力。具体来说: (1)强调对基本概念和基本思想的理解和掌握 教学中应强调对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想(如函数、空间观念、运算、数形结合、向量、导数、统计、随机观念、算法等)要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。 (2)重视基本技能的训练 熟练掌握一些基本技能,对学好数学是非常重要的。在高中数学课程中,要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练。但应注意避免过于繁杂和技巧性过强的训练。 (3)与时俱进地审视基础知识与基本技能 随着时代和数学的发展,高中数学的基础知识和基本技能也在发生变化,教学中要与时俱进地审视基础知识和基本技能。例如,统计、概率、导数、向量、算法等内容已经成为高中数学的基础知识。对原有的一些基础知识也要用新的理念来组织教学。例如,立体几何的教学可从不同视角展开——从整体到局部,从局部到整体,从具体到抽象,从一般到特殊,而且应注意用向量方法(代数方法)处理有关问题;不等式的教学要关注它的几何背景和应用;三角恒等变形的教学应加强与向量的联系,简化相应的运算和证明。又如, 口头、书面的数学表达是学好数学的基本功,在教学中也应予以关注同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“双基异化”的倾向。 3. 注重联系,提高对数学整体的认识 数学的发展既有内在的动力,也有外在的动力。在高中数学的教学中,要注重数学的不同分支和不同内容之间的联系,数学与日常生活的联系,数学与其他学科的联系。 高中数学课程是以模块和专题的形式呈现的。因此,教学中应注意沟通各部分内容之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识之间的有机联系,感受数学的整体性,进一步理解数学的本质,提高解决问题的能力。例如,教学中要注重函数、方程、不等式的联系;向量与三角恒等变形、向量与几何、向量与代数的联系;数与形的联系;算法思想在有关内容中的渗透、在不同内容中的应用等。此外,还要注意数学与其他学科及现实世界的联系。例如,教学中应重视向量与力、速度的联系,导数与现实世界中存在的变化率的联系等。 4. 注重数学知识与实际的联系,发展学生的应用意识和能力 在数学教学中,应注重发展学生的应用意识;通过丰富的实例引入数学知识,引导学生应用数学知识解决实际问题,经历探索、解决问题的过程,体会数学的应用价值。帮助学生认识到:数学与我有关,与实际生活有关,数学是有用的,我要用数学,我能用数学。 在有关内容的教学中,教师应指导学生直接应用数学知识解决一些简单问题,例如,运用函数、数列、不等式、统计等知识直接解决问题;还应通过数学建模活动引导学生从实际情境中发现问题,并归结为数学模型,尝试用数学知识和方法去解决问题;也可向学 生介绍数学在社会中的广泛应用,鼓励学生注意数学应用的事例,开阔他们的视野。 5. 关注数学的文化价值,促进学生科学观的形成 数学是人类文化的重要组成部分,是人类社会进步的产物,也是推动社会发展的动力。教学中应引导学生初步了解数学科学与人类社会发展之间的相互作用,体会数学的科学价值、应用价值、人文价值,开阔视野,探寻数学发展的历史轨迹,提高文化素养,养成求实、说理、批判、质疑等理性思维的习惯和锲而不舍的追求真理精神。 在教学中,应尽可能结合高中数学课程的内容,介绍一些对数学发展起重大作用的历史事件和人物,反映数学在人类社会进步、人类文明建设中的作用,同时也反映社会发展对数学发展的促进作用。例如,教师在几何教学中可以向学生介绍欧几里得建立公理体系的思想方法对人类理性思维、数学发展、科学发展、社会进步的重大影响;在解析几何、微积分教学中,可以向学生介绍笛卡儿创立的解析几何,介绍牛顿、莱布尼茨创立的微积分,以及它们在文艺复兴后对科学、社会、人类思想进步的推动作用;在有关数系的教学中,可以向学生介绍数系的发展和扩充过程,让学生感受数学内部动力、外部动力以及人类理性思维对数学产生和发展的作用。 6. 改善教与学的方式,使学生主动地学习 丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念。学生的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式。在高中数学教学中,教师的讲授仍然是重要的教学方式之一,但要注意的是必须关注学生的主体参与,师生互动。高中数学课程在教育理念、学科内容、课程资源的开发利用等方面都对教师提出了挑战。在教学中,教师应根据高中数学课程的理念和目标,学生的认知特征和数学的特点,积极探索适合高中学生数学学习的教学方式。特别应注意以下几个方面。 (1)高中数学课程增加了一些新的内容,对于这些内容,教师要把握标准的定位进行教学。例如,对算法内容,应着重强调使学生体会算法思想、提高逻辑思维能力,不应将算法简单处理成程序语言的学习和程序设计,同时应通过具体实例的上机实现(或编程)帮助学生理解算法思想及其作用。标准对传统内容的编排和要求也有新的变化,为了更好地理解和把握,有效地进行教学,教师应进行必要的探索和研究,提高自身的数学专业素质和教育科学素质。 (2)教学中,应鼓励学生积极参与教学活动,包括思维的参与和行为的参与。既要有教师的讲授和指导,也有学生的自主探索与合作交流。教师要创设适当的问题情境,鼓励学生发现数学的规律和问题解决的途径,使他们经历知识形成的过程。 (3)加强几何直观,重视图形在数学学习中的作用,鼓励学生借助直观进行思考。在几何和其他内容的教学中,都应借助几何直观,揭示研究对象的性质和关系。例如,借助几何直观理解圆锥曲线,理解导数的概念、函数的单调性与导数的关系等。 (4)在数学教学中,学习形式化的表达是一项基本要求,不能只限于形式化的表达,应注意揭示数学的本质。例如,有些概念(如函数)的教学是从已有知识和实例出发,再抽象为严格化的定义;有些内容(如统计)的教学是通过案例来学习它的思想和方法,理解其意义和作用;又如,对导数概念的理解,是通过实例,让学生经历从平均变化率过渡到瞬时变化率的过程,进而了解导数概念的实际背景以及瞬时变化率就是导数,体会导数的思想及其内涵。 (5)对不同的内容,可采用不同的教学和学习方式。例如,可采用收集资料、调查研究等方式,也可采用实践探索、自主探究、合作交流等方式,还可采用阅读理解、讨论交流、撰写论文等方式。 (6)教师应根据不同的内容、目标以及学生的实际情况,给学生留有适当的拓展、延伸的空间和时间,对有关课题作进一步探索、研究。例如,反函数的一般概念、概率中几何概型的计算等都可作为拓展、延伸的内容。拓展、延伸的内容不作为考试的要求。 (7)教师应充分尊重学生的人格和学生在数学学习上的差异,采用适当的教学方式,在数学学习和解决问题的过程中,激发学生对数学学习的兴趣,帮助学生养成良好的学习习惯,形成积极探索的态度,勤奋好学、勇于克服困难和不断进取的学风。 (8)教师应不断反思自己的教学,改进教学方式,提高自己的教学水平,形成个性化的教学风格。 7. 恰当运用现代信息技术,提高教学质量 应重视信息技术与数学课程内容的有机整合,整合的原则是有利于对数学本质的认识。例如,算法初步已经作为必修系列内容,教师在教学中应注意它与有关内容的整合。又如,统计中数据的处理、方程的近似求解等都体现了信息技术与数学课程内容的整合,教师在教学中应予以关注。信息技术与数学课程内容的整合还有较大的开发空间,教师可在这方面进行积极的、有意义的探索。在教学中,应重视利用信息技术来呈现以往课堂教学中难以呈现的课程内容。同时,应尽可能使用科学型计算器、计算机及软件、互联网,以及各种数学教育技术平台,加强数学教学与信息技术的结合。教师应恰当使用信息技术,改善学生的学习方式,引导学生借助信息技术学习有关数学内容,探索、研究一些有意义、有价值的数学问题。
评价建议
数学学习评价,既要重视学生知识、技能的掌握和能力的提高,又要重视其情感、态度和价值观的变化;既要重视学生学习水平的甄别,又要重视其学习过程中主观能动性的发挥;既要重视定量的认识,又要重视定性的分析;既要重视教育者对学生的评价,又要重视学生的自评、互评。总之,应将评价贯穿数学学习的全过程,既要发挥评价的甄别与选拔功能,更要突出评价的激励与发展功能。 数学教学的评价应有利于营造良好的育人环境,有利于数学教与学活动过程的调控,有利于学生和教师的共同成长。 1. 重视对学生数学学习过程的评价 相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。对学生数学学习过程的评价,包括学生参与数学活动的兴趣和态度、数学学习的自信、独立思考的习惯、合作交流的意识、数学认知的发展水平等方面。 下面给出一些具体评价内容的建议与要求。 ◆通过数学学习过程的评价,应努力引导学生正确认识数学的价值,产生积极的数学学习态度、动机和兴趣。 ◆独立思考是数学学习的基本特点之一,评价中应关注学生是否肯于思考、善于思考、坚持思考并不断地改进思考的方法与过程。 ◆学习过程的评价,应关注学生是否积极主动地参与数学学习活动、是否愿意和能够与同伴交流数学学习的体会、与他人合作探究数学问题。 ◆学生学好数学的自信心、勤奋、刻苦以及克服困难的毅力等良好的意志品质,也是数学学习过程评价的重要内容。 ◆评价应特别重视考察学生能否从实际情境中抽象出数学知识以及能否应用数学知识解决问题。 ◆评价应当重视考察学生能否理解并有条理地表达数学内容。 ◆评价应关注学生能否不断反思自己的数学学习过程,并改进学习方法。 2. 正确评价学生的数学基础知识和基本技能 学生对基础知识和基本技能的理解与掌握是数学教学的基本要求,也是评价学生学习的基本内容。评价要注重对数学本质的理解和思想方法的把握,避免片面强调机械记忆、模仿以及复杂技巧。 下面给出一些具体评价内容的建议与要求。 ◆评价对数学的理解,可以关注学生能否独立举出一定数量的用于说明问题的正例和反例。特别地,对核心概念学习的评价应该在高中数学学习的整个过程中予以关注。 ◆评价应关注学生能否建立不同知识之间的联系,把握数学知识的结构、体系。 ◆对数学基本技能的评价,应关注学生能否在理解方法的基础上,针对问题特点进行合理选择,进而熟练运用。 ◆数学语言具有精确、简约、形式化等特点,能否恰当地运用数学语言及自然语言进行表达与交流也是评价的重要内容。 3. 重视对学生能力的评价 学生能力的获得与提高是其自主学习、实现可持续发展的关键,评价对此应有正确导向。能力是通过知识的掌握和运用水平体现出来的,因此对于能力的评价应贯穿学生数学知识的建构过程与问题的解决过程。 如何评价能力既是课程改革面临的一个重要的课题,也是一个挑战。下面以数学地提出、分析、解决问题能力的评价为例,给出评价中应关注的方面。 ◆在日常的数学学习,尤其是数学探索与数学建模活动中,是否具有问题意识,是否善于发现和提出问题。 ◆能否选择有效的方法和手段收集信息、联系相关知识、提出解决问题的思路,建立恰当的数学模型,进而尝试解决问题。 ◆能否在解决问题的过程中,既能够独立思考,又能够与他人很好地交流与合作。 ◆能否对解决问题的方案进行质疑、调整和完善。 ◆能否将解决问题的方案与结果,用书面或口头等形式比较准确地表达并进行交流,根据问题的实际要求进行分析、讨论或应用。 ◆评价应当关注学生能否对自己提出问题和解决问题的过程进行自评与互评。 ◆在评价中,要注意肯定学生在数学学习中的发展和进步、特点和优点。 4. 实施促进学生发展的多元化评价 促进学生发展的多元化评价的涵义是多方面的,包括评价主体多元化、方式多元化、内容多元化和目标多元化等,应根据评价的目的和内容进行选择。 主体多元化,是指将教师评价、自我评价、学生互评、家长和社会有关人员评价等结合起来;方式多元化,是指定性与定量相结合,书面与口头相结合,课内与课外相结合,结果与过程相结合等;内容多元化,包括知识、技能和能力,过程、方法,情感、态度、价值观以及身心素质等内容的评价;目标多元化,是指对不同的学生有不同的评价标准,即尊重学生的个体差异、尊重学生对数学的不同选择,不以一个标准衡量所有学生的状况。 下面给出一些评价方式的具体建议。 ◆评价应以尊重被评价对象为前提,评价主体要参与学校数学教育活动,并注意主体间的沟通。 ◆笔试仍是定量评价的重要方式,但要注重考察对数学概念的理解、数学思想方法的掌握、数学思考的深度、探索与创新的水平以及应用数学解决实际问题的能力等。 ◆定量评价可以采取百分制或等级制的方式,评价结果应及时反馈给学生,但要避免根据分数排列名次的现象发生。 ◆定性评价可采取评语或成长记录等形式,评语或成长记录中应使用激励性语言全面、客观地描述学生的状况。 ◆要重视学生做数学的过程,充分发挥数学作业在学生评价中的作用。作业的类型应多样化,例如常规作业,开放性、探索性数学问题,数学实验,数学建模,课题研究作业,专题总结报告等;作业结果的呈现形式也应是多样的,例如习题解答,数学学习体会,数学小论文,研究、实验或调查报告(书面、口头)等;对作业的评价可以是量化的,也可以是定性的。评价过程应积极主动、简单可行,避免增加学生负担。 ◆应重视计算器、计算机等现代教育技术手段在评价学生学习中的运用。 总之,通过多元化的评价,可以更好地实现对学生多角度、全方位的评价与激励,努力使每一个学生都能得到成功的体验,有效地促进学生的发展。 5. 根据学生的不同选择进行评价 学生可以根据个人不同的条件以及不同的兴趣、志向,在高中阶段选择不同的数学课程组合进行学习(参见“对学生选课的建议”)。学校和教师应当根据学生的不同选择进行评价。 ◆学生选择了自己的课程组合以后,学校和教师应为学生建立相应的学习档案,当学生完成课程模块或专题的学习时,将反映学生水平的学习成果记入档案。 ◆当学生调整自己的课程组合时,学校和教师应及时地帮助学生做好已完成课程的评价,以及系列转换工作。 ◆学校和教师的这些评价,将成为学生进入社会求职或高等院校招生时评价学生的依据。高等院校的招生考试应当根据高校的不同要求,按照高中数学课程标准所设置的5种不同课程组合进行命题、考试,命题范围为必修系列、选修系列1、选修系列2、选修系列4。根据课程内容的特点,对选修系列3的评价应采用定性与定量相结合的形式,由(高中)学校来完成。高等院校在录取时,应全面地考虑学校对学生在高中阶段数学学习的评价。
教材编写建议
教材是实现课程目标、实施教学的重要资源。高中数学教材的编写,要根据《基础教育课程改革纲要(试行)》的精神,贯彻高中数学课程的基本理念与要求,为课程的顺利实施提供保证。教材应当有利于调动教师的积极性,创造性地进行教学;有利于改进学生的学习方式,促进他们主动地学习和发展。 教材应以本标准中的模块为单位进行编写。本标准提倡教材编写的多样化,对于各模块所规定的教学内容的编排顺序可以做适当的调整,不同的教材可以有各自的风格和特点。特别地,在教材的编写中,应当注意以下问题。 1. 素材的选取应体现数学的本质、联系实际、适应学生的特点 教材中素材的选取,首先要有助于反映相应数学内容的本质,有助于学生对数学的认识和理解,激发他们学习数学的兴趣,充分考虑学生的心理特征和认知水平。素材应具有基础性、时代性、典型性、多样性和可接受性。 高中学生已经具有较丰富的生活经验和一定的科学知识。因此,教材中应选择学生感兴趣的、与其生活实际密切相关的素材,现实世界中的常见现象或其他科学的实例,展现数学的概念、结论,体现数学的思想、方法,反映数学的应用,使学生感到数学就在自己身边,数学的应用无处不在。例如,在统计内容中,可以选择具有丰富生活背景的案例,展示统计思想和方法的广泛应用;通过行星运动的轨迹、凸凹镜等说明圆锥曲线的意义和应用;通过速度的变化率、体积的膨胀率,以及效率、密度等大量丰富的现实背景引入导数的概念。 2. 体现知识的发生发展过程,促进学生的自主探索 课程内容的呈现,应注意反映数学发展的规律,以及人们的认识规律,体现从具体到抽象、特殊到一般的原则。例如,在引入函数的一般概念时,应从学生已学过的具体函数(一次函数二次函数)和生活中常见的函数关系(如气温的变化、出租车的计价)等入手,抽象出一般函数的概念和性质,使学生逐步理解函数的概念;立体几何内容,可以用长方体内点、线、面的关系为载体,使学生在直观感知的基础上,认识空间点、线、面的位置关系。 教材应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉。 教材的呈现应为引导学生自主探索留有比较充分的空间,有利于学生经历观察、实验、猜测、推理、交流、反思等过程。编写教材时,可以通过设置具有启发性、挑战性的问题,激发学生进行思考,鼓励学生自主探索,并在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对数学较为全面的体验和理解。 3. 体现相关内容的联系,帮助学生全面地理解和认识数学 数学各部分内容之间的知识是相互联系的,学生的学习是循序渐进、逐步发展的。教材编写时应充分注意这些问题,不要因为高中数学课程内容划分成了若干模块,而忽视相关内容的联系。 为了培养学生对数学内部联系的认识,教材需要将不同的数学内容相互沟通,以加深学生对数学的认识和对本质的理解。例如,教材编写中可以借助二次函数的图象,比较和研究一元二次方程、不等式的解;比较等差数列一次函数等比数列指数函数的图象,发现它们之间的联系等。 本标准的内容是根据学生的不同需要,分不同的系列和层次展开的。教材在处理这些内容时,还要注意明确相关内容在不同模块中的要求及其前后联系,注意使学生在已有知识的基础上螺旋上升、逐步提高。例如,统计的内容,在必修系列课程中主要是通过尽可能多的实例,使学生在义务教育阶段的基础上,体会随机抽样、用样本估计总体的统计思想,并学习一些处理数据的方法;在选修课中则是通过各种不同的案例,使学生进一步学习一些常用的统计方法,加深对统计思想及统计在社会生产生活中的作用的认识。 4. 注意新理念、新内容在教材编写上的特殊处理 依据本次课程改革的新理念,在高中数学课程中,引入了一些新的课程内容和新的处理方式,编写教材时应特别留意对它们的处理,按照本标准规定的内容要求来进行。 算法是高中数学课程中的新内容之一。教材要注意突出算法的思想,提供实例,使学生经历模仿、探索、程序框图设计、操作等过程,从而体会算法思想的本质,而不应将算法内容单纯处理成程序语言的学习和程序设计。同时,教材还要注意在能够与算法结合的课程内容中,融入用算法解决问题的练习,不断加深学生对算法的认识。例如,可以在求一元二次不等式解的内容中融入算法的内容。 本标准设置了“数学探究”“数学建模”和“数学文化”等新的学习活动。教材编写时,应把这些活动恰当地穿插安排在有关的教学内容中,并注意提供相关的推荐课题、背景材料和示范案例,帮助学生设计自己的学习活动,完成课题作业或专题总结报告。 选修系列3,选修系列4教材的编写,应根据各系列的特点以及各专题的具体要求,进行积极的、有意义的、富有创造性的开发与探索。 5. 渗透数学文化,体现人文精神 在教材编写中,应将数学的文化价值渗透在各部分内容中,采取多种形式,如与具体数学内容相结合或单独设置栏目做专题介绍;也可以列出课外阅读的参考书目及相关资料源,以便学生自己查阅、收集整理。 6. 内容设计要有一定的弹性 教材编写时,内容设计要具有一定的弹性。例如,根据学生特点和兴趣,教材可以在高中数学课程的相关内容中安排一些引申的内容,这些内容可能是一些具有探索性的问题,也可能是一些拓展的数学内容,或一些重要的数学思想方法。选择和安排这些内容时,要注意思想性、反映数学的本质。这些内容不作评价要求。 7. 反映现代信息技术与数学课程的整合 随着时代的发展,信息技术已经渗透到数学教学中。如何使现代信息技术为学生的数学学习提供更多的帮助,是教材编写中值得注意和进一步思考的问题。使用现代信息技术的原则是有利于对数学本质的理解。教材可以在处理某些内容时,提倡使用计算器或计算机,帮助学生理解数学概念、探索数学结论,还应鼓励学生使用现代技术手段处理繁杂的计算、解决实际问题,以取得更多的时间和精力去探索和发现数学的规律,培养创新精神和实践能力。另一方面,现代信息技术不仅在改进学生的学习方式上可以发挥巨大的潜力,而且可以渗透到数学的课程内容中来,教材应注意这些资源的整合。例如,可以把算法融入有关数学课程内容中;也可以引导学生通过网络搜集资料,研究数学的文化,体会数学的人文价值
数学是一门讲理的学科,具有很强的逻辑性。初中、高中学习的数学都叫做初等数学,是高等数学的基础。而相对于初中数学来说,高中数学明显难了很多。因此,很多原本在初中数学成绩很好的同学,到了高中就感到吃力了。针对高中数学特点,总结了两大要素,供同学们参考
参考资料
《普通高中数学课程标准》.凤凰教育网.2009-9-3
最新修订时间:2023-07-08 22:08
目录
概述
图书前言
参考资料