影像学不仅扩大了人体的检查范围,提高了诊断水平,而且可以对某一些疾病进行治疗。这样,就大大地扩展了本学科的
工作内容,并成为医疗工作中的重要支柱。自
伦琴(Wilhelm Conrad Rontgen)1895年发现
X线以后不久,在医学上,X线就被用于对人体检查,进行
疾病诊断,形成了
放射诊断学(diagnosticradiology)的新学科,并奠定了
医学影像学(medicalimageology)的基础。放射诊断学仍是医学影像学中的主要内容,应用普遍。
基本介绍
50年代到60年代开始应用超声与
核磁扫描进行人体检查,出现了
超声成像(ultrasonography, USG)和γ
闪烁成像(γ-
scintigraphy)。70年代和80年代又相继出现了X线
计算机体层成像(X-raycomputedtomography, X-rayCT或CT)、
磁共振成像(magneticresonanceimage, MRI)和发射体层成像。(emissioncomputedtomography,
ECT)如单光子发射体层成像(singlephotonemissioncomputedtomography,
SPECT)与
正电子发射体层成像(positronemissionemissiontomography, PET)等新的成像技术。这样,仅100年的时间就形成了包括X线诊断的影像
诊断学(diagnosticimageology)。虽然各种成像技术的成像原理与方法不同,诊断价值与限度亦各异,但都是使人体内部结构和器官形成影像,从而了解
人体解剖与
生理功能状况以及病理变化,以达到诊断的目的;都属于活体器官的视诊范畴,是特殊的
诊断方法。70年代迅速兴起的
介入放射学(interventionalradiology),即在影像监视下采集标本或在影像诊断的基础上,对某些疾病进行治疗,使影像诊断学发展为医学影像学的崭新局面。医学影像学不仅扩大了人体的检查范围,提高了诊断水平,而且可以对某引些疾病进行治疗。这样,就大大地扩展了本学科的
工作内容,并成为医疗工作中的重要支柱。
建国以来,中国医学影像学有很大发展。专业队伍不断壮大,在各医疗单位都建有影像科室。现代的影像设备,除了常规的影像诊断设备外,USG、Ct、SPECT乃至MRI等先进设备已在较大的医疗单位应用,并积累了较为丰富的经验。医学影像学专业的书刊种类很多,在医学、教学、科研、培养专业人材和
学术交流等方面发挥了积极的作用。作为学术团体的全国放射学会和和各地分会,有力地推动了国内和国际间的学术交流。影像设备,包括常规的和先进的设备,如CT和MRI设备以及诸如胶片,显、定影剂和
造影剂等。中国已能自行设计、生产或组装。
X线成像
产生特性
(一)X线的产生 1895年,德国科学家
伦琴发现了具有很高能量,肉眼看不见,但能穿透不同物质,能使荧光物质发光的射线。因为当时对这个射线的性质还不了解,因此称之为
X射线。为纪念发现者,后来也称为
伦琴射线,现简称X线(X-ray)。
一般说,高速行进的
电子流被物质阻挡即可产生X线。具体说,X线是在真空管内高速行进成束的电子流撞击钨(或钼)靶时而产生的。因此,X线
发生装置,主要包括X线管、变压器和
操作台。
X线管为一
高真空的
二极管,杯状的阴极内装着
灯丝;阳极由呈
斜面的钨靶和附属散热装置组成。
变压器为提供X线管
灯丝电源和
高电压而设置。一般前者仅需12V以下,为一
降压变压器;后者需40~150kV(常用为45~90kV)为一
升压变压器。
操作台主要为调节电压、电流和
曝光时间而设置,包括
电压表、
电流表、时计、调节旋钮和开关等。
在X线管、变压器和操作台之间以电缆相连。
X线的发生程序是
接通电源,经过降压变压器,供X线管
灯丝加热,产生
自由电子并云集在阴极附近。当升压变压器向X线管两极提供
高压电时,阴极与阳极间的
电势差陡增,处于活跃状态的自由电子,受强有力的吸引,使成束的电子,以高速由阴极向阳极行进,撞击阳极钨靶
原子结构。此时发生了
能量转换,其中约1%以下的能量形成了X线,其余99%以上则转换为热能。前者主要由X线管窗口发射,后者由散热设施散发。
(二)X线的特性 X线是一种波长很短的
电磁波。
波长范围为0.0006~50nm。X线诊断常用的X线波长范围为0.008~0.031nm(相当于40~150kV时)。在电磁辐射谱中,居γ射线与
紫外线之间,比可见光的波长要短得多,肉眼看不见。
除上述一般
物理性质外,X线还具有以下几方面与X线成像相关的特性:
穿透性:X线波长很短,具有很强的
穿透力,能穿透一般
可见光不能穿透的各种不同密度的物质,并在穿透过程中受到一定程度的吸收即衰减。X线的穿透力与X线
管电压密切相关,电压愈高,所产生的X线的波长愈短,穿透力也愈强;反之,电压低,所产生的X线波长愈长,其穿透力也弱。另一方面,X线的穿透力还与被照体的密度和厚度相关。X线穿透性是X线成像的基础。
荧光效应:X线能激发荧光物质(如
硫化锌镉及
钨酸钙等),使产生肉眼可见的荧光。即X线作用于荧光物质,使波长短的X线转换成波长长的荧光,这种转换叫做荧光效应。这个特性是进行透视检查的基础。
摄影效应:涂有
溴化银的胶片,经X线照射后,可以感光,产生潜影,经显、定影处理,感光的溴化银中的
银离子(Ag)被还原成金属银(Ag),并沉淀于胶片的
胶膜内。此金属银的微粒,在胶片上呈黑色。而未感光的溴化银,在定影及冲洗过程中,从X线胶片上被洗掉,因而显出
胶片片基的透明本色。依金属银沉淀的多少,便产生了黑和白的影像。所以,摄影效应是X线成像的基础。
电离效应:X线通过任何物质都可产生电离效应。空气的电离程度与空气所吸收X线的量成正比,因而通过测量
空气电离的程度可计算出X线的量。X线进入人体,也产生
电离作用,使人体产生生物学方面的改变,即
生物效应。它是放射防护学和放射治疗学的基础。
成像原理
X线之所以能使人体在荧屏上或胶片上形成影像,一方面是基于X线的特性,即其穿透性、荧光效应和摄影效应;另一方面是基于人体组织有密度和厚度的差别。由于存在这种差别,当X线透过人体各种不同
组织结构时,它被吸收的程度不同,所以到达荧屏或胶片上的X线量即有差异。这样,在荧屏或X线上就形成黑白对比不同的影像。
因此,X线影像的形成,应具备以下三个
基本条件:首先,X线应具有一定的穿透力,这样才能穿透照射的组织结构;第二,被穿透的组织结构,必须存在着密度和厚度的差异,这样,在穿透过程中被吸收后剩余下来的X线量,才会是有差别的;第三,这个有差别的剩余X线,仍是不可见的,还必须经过显像这一过程,例如经X线片、荧屏或电视屏显示才能获得具有黑白对比、层次差异的X线影像。
人体组织结构,是由不同元素所组成,依各种组织单位体积内各元素量总和的大小而有不同的密度。人体组织结构的密度可归纳为三类:属于高密度的有骨组织和
钙化灶等;中等密度的有软骨、肌肉、神经、实质器官、
结缔组织以及体内液体等;低密度的有
脂肪组织以及存在于
呼吸道、胃肠道、鼻窦和乳突内的气体等。
当强度均匀的X线穿透厚度相等的不同密度组织结构时,由于吸收程度不同。在X线片上或荧屏上显出具有黑白(或明暗)对比、层次差异的X线影像。
在
人体结构中,胸部的肋骨密度高,对X线吸收多,照片上呈白影;肺部含气体密度低,X线吸收少,照片上呈黑影。
X线穿透低密度组织时,被吸收少,剩余X线多,使X线胶片感光多,经
光化学反应还原的金属银也多,故X线胶片呈黑影;使荧光屏所生荧光多,故荧光屏上也就明亮。高密度组织则恰相反病理变化也可使人体组织密度发生改变。例如,
肺结核病变可在原属低密度的肺组织内产生中等密度的
纤维性改变和高密度的钙化灶。在
胸片上,于肺影的背景上出现代表病变的白影。因此,不同组织密度的
病理变化可产生相应的病理X线影像。
人体组织结构和器官形态不同,厚度也不一致。其厚与薄的部分,或分界明确,或逐渐移行。厚的部分,吸收X线多,透过的X线少,薄的部分则相反,因此,X线投影可有不同表现。在X线片和荧屏上显示出的黑白对比和明暗差别以及由黑到白和由明到暗,其界线呈比较分明或渐次移行,都是与它们厚度间的差异相关的。
A.X线透过
梯形体时,厚的部分,X线吸收多,透过的少,照片上呈白影,薄的部分相反,呈黑影。白影与黑影间界限分明。荧光屏上,则恰好相反 B.X线透过三角形体时,其吸收及成影与梯形体情况相似,但黑白影是逐步过渡的,无清楚界限。荧光屏所见相反 C.X线透过管状体时,其外周部分,X线吸收多,透过的少,呈白影,其中间部分呈黑影,白影与黑影间分界较为清楚。荧光屏所见相反
由此可见,密度和厚度的差别是产生影像对比的基础,是X线成像的基本条件。应当指出,密度与厚度在成像中所起的作用要看哪一个占优势。例如,在胸部,肋骨密度高但厚度小,而心脏大血管密度虽低,但厚度大,因而心脏大血管的影像反而比肋骨影像白。同样,胸腔大量积液的密度为中等,但因厚度大,所以其影像也比肋骨影像为白。需要指出,人体组织结构的密度与X线片上的影像密度是两个不同的概念。前者是指人体组织中单位体积内物质的质量,而后者则指X线片上所示影像的黑白。但是物质密度与其本身的比重成正比,物质的密度高,比重大,吸收的X线量多,影像在照片上呈白影。反之,物质的密度低,比重小,吸收的X线量少,影像在照片上呈黑影。因此,照片上的白影与黑影,虽然也与物体的厚度有关,但却可反映物质密度的高低。在术语中,通常用密度的高与低表达影像的白与黑。例如用高密度、中等密度和低密度分别表达白影、灰影和黑影,
并表示物质密度。人体组织密度发生改变时,则用密度增高或密度减低来表达影像的白影与黑影。
成像设备
X线机包括X线管及支架、变压器、操作台以及
检查床等基本部件。60年代以来,
影像增强和电视
系统技术的应用,使它们逐渐成为新型X线机的主要部件之一。为了保证X线
摄影质量,新型X线机在摄影技术参数的选择、摄影位置的校正方面,都更加计算机化、数字化、自动化。为适应影像诊断学专业的发展,近30多年来,除通用型X线机以外,又开发了适用于
心血管、胃肠道、
泌尿系统、
乳腺及介入放射、
儿科、手术室等专用的X线机。
成像特点
X线图像是X线束穿透某一部位的不同密度和厚度组织结构后的投影总和,是该穿透路径上各层投影相互叠加在一起的影像。正位X线投影中,它既包括有前部,又有中部和总后的组织结构。重叠的结果,能使体内某些组织结构的投影因累积增益而得到很好的显示,也可使体内另一些组织结构的投影因减弱抵消而较难或不能显示。
由于X线束是从X线管向人体作锥形投射,因此,将使X线影像有一定程度放大并产生伴影。伴影使X线影像的清晰度减低。
锥形投射还可能对X线影像产生影响。处于中心射线部位的X线影像,虽有放大,但仍保持被照体原来的形状,并无图像歪曲或失真;而边缘射线部位的X线影像,由于倾斜投射,对被照体则既有放大,又有歪曲。
X线检查
X线图像是由从黑到白不同灰度的影像所组成。这些不同灰度的影像反映了人体组织结构的解剖及
病理状态。这就是赖以进行X线检查的
自然对比。对于缺乏自然对比的组织或器官,可人为地引入一定量的在密度上高于或低于它的物质,便产生人工对比。因此,自然对比和人工对比是X线检查的基础。
普通检查
荧光透视(
fluoroscopy):简称透视。为常用X线检查方法。由于荧光亮度较低,因此透视一般须在暗室内进行。透视前须对视力行
暗适应。采用影像增强电视系统,影像亮度明显增强,效果更好。透视的主要优点是可转动患者体位,改变方向进行观察;了解器官的动态变化,如心、大血管搏动、膈运动及胃肠蠕动等;透视的设备简单,操作方便,费用较低,可立即得出结论等。主要缺点是荧屏亮度较低,影像
对比度及清晰度较差,难于观察密度与厚度差别较少的器官以及密度与厚度较大的部位。例如头颅、腹部、脊柱、骨盆等部位均不适宜透视。另外,缺乏客观记录也是一个重要缺点。
X线摄影(
radiography):所得照片常称平片(plainfilm)。这是应用最广泛的检查方法。优点是成像清晰,对比度及清晰度均较好;不难使密度、厚度较大或密度、厚度差异较小部位的病变显影;可作为客观记录,便于复查时对照和会诊。缺点是每一照片仅是一个方位和一瞬间的X线影像,为建立立体概念,常需作互相垂直的两个方位摄影,例如正位及
侧位;对功能方面的观察,不及透视方便和直接;
费用比透视稍高。
这两种方法各具优缺点,互相配合,取长补短,可提高诊断的正确性。
特殊检查
体层摄影(
tomography):普通X线片是X线投照路径上所有影像重叠在一起的总和投影。一部分影像因与其前、后影像重叠,而不能显示。体层摄影则可通过特殊的装置和操作获得某一选定层面上组织结构的影像,而不属于选定层面的结构则在投影过程中被模糊掉。体层摄影常用以明确平片难于显示、重叠较多和处于较深部位的病变。多用于了解病变内部结构有无破坏、空洞或钙化,边缘是否锐利以及病变的确切部位和范围;显示气管、支气管腔有无狭窄、堵塞或扩张;配合造影检查以观察选定层面的结构与病变。
软线摄影:采用能发射软X线的钼靶管球,用以检查软组织,特别是
乳腺的检查。
其他:
特殊检查方法尚有①放大摄影,采用微焦点和增大人体与照片距离以显示较细微的病变;②
荧光摄影,
荧光成像基础上进行缩微摄片,主要用于集体体检;③记波摄影,采用特殊装置以波形的方式记录心、大血管搏动,膈运动和胃肠蠕动等。
在曝光时,X线管与胶片作相反方向移动,而移动的轴心即在选定层面的平面上。结果,在被检查的部位内,只有选定的一层结构始终投影在胶片上的固定位置(A'),从而使该层面的结构清楚的显影,而其前后各层结构则因曝光时,在胶片上投影的位置不断移动而成模糊影像(B')
造影检查
人体组织结构中,有相当一部分,只依靠它们本身的密度与厚度差异不能在普通检查中显示。此时,可以将高于或低于该组织结构的物质引入器官内或周围间隙,使之产生对比以显影,此即
造影检查。引入的物质称为
造影剂(contrastmedia)。造影检查的应用,显著扩大了X线检查的范围。
(一)造影剂 按密度高低分为高密度造影和低密度造影剂两类。
1.
高密度造影剂 为原子序数高、比重大的物质。常用的有钡剂和碘剂。
钡剂为
医用硫酸钡粉末,加水和胶配成。根据检查部位及目的,按粉末微粒大小、均匀性以及用水和胶的量配成不同类型的钡
混悬液,通常以重量/体积比来表示浓度。
硫酸钡混悬液主要用于
食管及
胃肠造影,并可采用钡气双重对比检查,以提高诊断质量。
碘剂种类繁多,应用很广,分有机碘和无机
碘制剂两类。
有机
碘水剂类
造影剂注入血管内以显示器官和大血管,已有数十年历史,且成为常规方法。它主要经肝或肾从胆道或
泌尿道排出,因而广泛用于
胆管及胆囊、
肾盂及尿路、动脉及静脉的造影以及作CT增强检查等。70年代以前均采用离子型造影剂。这类
高渗性离子型造影剂,可引起血管内液体增多和
血管扩张,
肺静脉压升高,
血管内皮损伤及
神经毒性较大等缺点,使用中可出现毒
副反应。70年代开发出
非离子型造影剂,它具有相对低渗性、低粘度、低毒性等优点,大大降低了毒副反应,适用于血管、
神经系统及造影增强CT扫描。惜费用较高,尚难于普遍使用。
上述水溶性碘
造影剂有以下类型:①离子型,以泛影葡胺(urografin)为代表;②非离子型以
碘苯六醇(iohexol)、
碘普罗胺(iopromide)
碘必乐(iopamidol)为代表;③非离子型
二聚体,以碘曲仑(iotrolan)为代表。
无机制碘剂当中,布什化油(lipoidol)含碘40%,常用于支气管、瘘管子官输入卵管造影等。
碘化油造影后吸收极慢,故造影完毕应尽可能
吸出。
脂肪酸
碘化物的
碘苯酯(pantopaque),可注入椎管内作
脊髓造影,但现已用非离子型二聚体碘水剂。
2.低密度
造影剂 为原子序数低、比重小的物质。应用于临床的有
二氧化碳、氧气、空气等。在人体内二氧化碳吸收最快,空气吸收最慢。空气与氧气均不能注入正在出血的器官,以免发生气栓。可用于
蛛网膜下腔、
关节囊、腹腔、胸腔及软组织间隙的造影。
(二)造影方式 有以下两种方式。
1.直接引入 包括以下几种方式;①口服法:
食管及
胃肠钡餐检查;②灌注法:钡剂
灌肠,
支气管造影,逆行
胆道造影,逆行泌尿道造影,
瘘管、脓腔造影及
子宫输卵管造影等;③穿刺注入法:可直接或经导管注入器官或组织内,如心血管造影,
关节造影和脊髓造影等。
2.间接引入
造影剂先被引入某一特定组织或器官内,后经吸收并聚集于欲造影的某一器官内,从而使之显影。包括
吸收性与排泄性两类。吸收性如
淋巴管造影。排泄性如
静脉胆道造影或
静脉肾盂造影和口服法胆襄造影等。前二者是经静脉注入造影剂后,造影剂聚集于肝、肾,再排泄入胆管或泌尿道内。后者是口服造影剂后,造影剂经肠道吸收进入
血循环,再到肝胆并排入胆襄内,即在蓄积过程中摄影,现已少用。
(三)检查前准备造影反应的处理 各种造影检查都有相应的检查前准备和注意事项。必须严格执行,认真准备,以保证检查效果和患者的安全。应备好抢救药品和器械,以备急需。
在
造影剂中,钡剂较安全,气体造影时应防止
气栓的发生。静脉内气栓发生后应立即将患者置于
左侧卧位,以免气体进入
肺动脉。造影反应中,以碘
造影剂过敏较常见并较严重。在选用
碘造影剂行造影时,以下几点值得注意:①了解患者有无造影的禁忌证,如严重心、肾疾病和
过敏体质等;②作好解释工作,争取患者合作;③造影剂过敏试验,一般用1ml30%的造影剂
静脉注射,观察15分钟,如出现胸闷、
咳嗽、气促、恶心、呕吐和
荨麻疹等,则为阳性,不宜造影检查。但应指出,尽管无上述症状,造影中也可发生反应。因此,关键在于应有抢救
过敏反应的准备与能力;④作好抢救准备,严重反应包括
周围循环衰竭和
心脏停搏、
惊厥、
喉水肿、肺水肿和
哮喘发作等。遇此情况,应立即终止造影并进行抗休克、抗过敏和
对症治疗。
呼吸困难应给氧,周围循环衰竭应给
去甲肾上腺素,心脏停搏则需立即进行心脏按摩。
方法选择
X线检查方法的选择,应该在了解各种X线检查方法的
适应证、禁忌证和优缺点的基础上,根据临床初步诊断,提出一个X线检查方案。一般应当选择安全、准确、简便而又经济的方法。因此,原则上应首先考虑透视或拍平片,必要时才考虑造影检查。但也不是绝对的,例如不易为X线穿透的部位,如颅骨就不宜选择透视,而应摄平片。有时两三种检查方法都是必须的,例如对于某些
先天性心脏病,准备
手术治疗的患者,不仅需要
胸部透视与平片,还必须作
心管造影。对于可能产生一定反应和有一定危险的检查方法,选择时更应严格掌握适应证,不可视作常规检查加以滥用,以免给患者带痛苦和损失。
CT成像
基本原理
CT是用X线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由
光电转换变为
电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。
图像形成的处理有如对选定层面分成若干个体积相同的
长方体,称之为
体素(voxel)。扫描所得信息经计算而获得每个体素的X线
衰减系数或
吸收系数,再排列成矩阵,即
数字矩阵。数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到
白不等灰度的小方块,即象素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图象。每个体素的X线吸收系数可以通过不同的
数学方法算出。
CT设备
CT设备主要有以下三部分:①扫描部分由X线管、探测器和扫描架组成;②
计算机系统,将扫描收集到的信息数据进行贮存运算;③
图像显示和
存储系统,将经计算机处理、重建的图像显示在电视屏上或用多幅照相机或激光照相机将图像摄下。探测器从原始的1个发展到多达4800个。
扫描方式也从平移/旋转、旋转/旋转、旋转/固定,发展到新近开发的螺旋CT扫描(spiralCt scan)。计算机容量大、运算快,可达到立即重建图像。由于扫描时间短,可避免运动,例如,
呼吸运动的干扰,可提高图像质量;层面是连续的,所以不致于漏掉病变,而且可行
三维重建,注射
造影剂作
血管造影可得
CT血管造影(Ct angiography,CTA)。超高速CT扫描所用扫描方式与前者完全不同。扫描时间可短到40ms以下,每秒可获得多帧图像。由于扫描时间很短,可摄得电影图像,能避免运动所造成的伪影,因此,适用于心血管造影检查以及小儿和
急性创伤等不能很好的合作的患者检查。
图像特点
CT图像是由一定数目由黑到白不同灰度的象素按矩阵排列所构成。这些象素反映的是相应体素的X线吸收系数。不同
CT装置所得图像的象素大小及数目不同。大小可以是1.0×1.0mm,0.5×0.5mm不等;数目可以是256×256,即65536个,或512×512,即262144个不等。显然,象素越小,数目越多,构成图像越细致,即
空间分辨力(spatialresolution)高。CT图像的空间分辨力不如X线图像高。
CT图像是以不同的灰度来表示,反映器官和组织对X线的吸收程度。因此,与X线图像所示的黑白影像一样,黑影表示低吸收区,即低密度区,如肺部;白影表示高吸收区,即高密度区,如骨骼。但是CT与X线图像相比,CT的
密度分辨力高,即有高的密度分辨力(density resolutiln)。因此,人体
软组织的密度差别虽小,吸收系数虽多接近于水,也能形成对比而成像。这是CT的突出优点。所以,CT可以更好地显示由软组织构成的器官,如脑、脊髓、
纵隔、肺、肝、胆、胰以及盆部器官等,并在良好的解剖图像背景上显示出病变的影像。
x线图像可反映正常与病变组织的密度,如
高密度和低密度,但没有量的概念。CT图像不仅以不同灰度显示其密度的高低,还可用组织对X线的吸收系数说明其密度高低的程度,具有一个量的概念。实际工作中,不用吸收系数,而换算成CT值,用CT值说明密度。单位为Hu(Hounsfield unit)。
水的吸收系数为10,CT值定为0Hu,人体中密度最高的
骨皮质吸收系数最高,CT值定为+1000Hu,而
空气密度最低,定为-1000Hu。人体中密度不同和各种组织的CT值则居于-1000Hu到+1000Hu的2000个分度之间
人体
软组织的CT值多与水相近,但由于CT有高的密度分辨力,所以密度差别虽小,也可形成对比而显影。
CT值的使用,使在描述某一组织影像的密度时,不仅可用高密度或低密度形容,且可用它们的CT值平说明密度高低的程度。
CT图像是层面图像,常用的是
横断面。为了显示整个器官,需要多个连续的层面图像。通过CT设备上图像的重建程序的使用,还可重建
冠状面和
矢状面的层面图像。
CT检查
患者卧于检查床上,摆好位置,选好层面厚度与
扫描范围,并使扫描部位伸入扫描架的孔内,即可进行扫描。大都用
横断面扫描,
层厚用5或10mm,特殊需要可选用薄层,如2mm。患者要不动,胸、腹部扫描要停止呼吸。因为轻微的移动或活动可造成
伪影,影响
图像质量。
CT检查分
平扫(plainCT scan)、造影
增强扫描(contrast enhancement, CE)和造影扫描。
平扫
是指不用造影增强或造影的普通扫描。一般都是先作平扫。
造影增强
是经静脉注入
水溶性有机碘剂,如60%~76%
泛影葡胺60ml后再行扫描的方法。血内
碘浓度增高后,器官与病变内碘的浓度可产生差别,形成密度差,可能使病变显影更为清楚。方法分团注法、静滴法和静注与静滴法几种。
造影扫描
是先作器官或结构的造影,然后再行扫描的方法。例如向脑池内注入
碘曲仑8~10ml或注入空气4~6ml行脑池造影再行扫描,称之为
脑池造影CT扫描,可清楚显示脑池及其中的小
肿瘤。
CT诊断
在观察分析时,应先了解扫描的
技术条件,是
平扫还是
增强扫描,再对每帧CT图像进行观察。结合一系列多帧图像的观察,可立体地了解器官大小、形状和器官间的解剖关系。病变在良好的解剖背景上
显影是CT的特点,也是诊断的主要根据,大凡病变够大并同邻近组织有足够的
密度差,即可显影。根据病变密度高于、低于或等于所在器官的密度而分为
高密度、低密度或
等密度病变。如果密度不均,有高有低,则为混杂密度病变。发现病变要分析病变的位置、大小、形状、数目和边缘,还可测定
CT值以了解其密度的高低。如行造影增强扫描,则应分析病变有无密度上的变化,即有无强化。如病变密度不增高,则为不强化;密度增高,则为强化。强化程度不同,形式亦异,可以是均匀强化或不均匀强化或不均匀强化或只病变周边强化,即环状强化。对强化区行CT值测量,并与
平扫的CT值比较,可了解强化的程度。此外,还要观察邻近器官和组织的受压、移位和浸润、破坏等。
综合分析器官大小、形状的变化,病变的表现以及邻近器官受累情况,就有可能对病变的位置、大小与数目、范围以及病理性质作出判断。和其他成像技术一样,还需要与临床资料结合,并同其他影像诊断综合分析。
CT在发现病变、确定病变位置及大小与数目方面是较敏感而可靠的,但对病理性质的诊断,也有一定的限制。
CT应用
CT诊断由于它的特殊诊断价值,已广泛应用于临床。但CT设备比较昂贵,检查费用偏高,某些部位的检查,诊断价值,尤其是
定性诊断,还有一定限度,所以不宜将
CT检查视为常规诊断手段,应在了解其优势的基础上,合理的选择应用。CT诊断应用于各系统疾病有以下特点及优势。
CT检查对中枢神经系统疾病的诊断价值较高,应用普遍。对
颅内肿瘤、
脓肿与
肉芽肿、
寄生虫病、外伤性
血肿与
脑损伤、
脑梗塞与
脑出血以及
椎管内肿瘤与
椎间盘脱出等病诊断效果好,诊断较为可靠。因此,脑的
X线造影除
脑血管造影仍用以诊断
颅内动脉瘤、血管
发育异常和
脑血管闭塞以及了解
脑瘤的供血动脉以外,其他如气脑、
脑室造影等
均已少用。螺旋CT扫描,可以获得比较精细和清晰的血管重建图像,即CTA,而且可以做到三维
实时显示,有希望取代常规的脑血管造影。
CT对头颈部疾病的诊断也很有价值。例如,对眶内
占位病变、鼻窦
早期癌、
中耳小胆指瘤、听骨破坏与
脱位、内耳
骨迷路的
轻微破坏、耳先天发育异常以及
鼻咽癌的早期发现等。但明显病变,
X线平片已可确诊者则无需CT检查。
少支
胶质细胞瘤增强,右额、顶叶有一较大不规则
肿块,强化不均,周围有低密度水肿区
星形细胞瘤 增强,左额顶叶有一不均匀强化肿块,不规则,内有未有强化的低密度区,周围有低密度水肿区,中线结构右移
胸腺增生 平扫,胸腺区有一分叶状密度均一病灶,仍呈胸腺状,
主动脉受压右移
肝脓肿 平扫,肝右叶有一低密度灶类圆形,中心部密度更低为
脓腔,周边为脓肿壁呈“
双边征”
腰椎骨折 平扫,椎弓多处中断,
椎管变形,其内可见碎骨片
肝转移癌 增强,肝左、右叶多个大小不一、不规则
低密度灶,周边有细的强化环围绕
肺脓肿 平扫,右上叶有一空洞性病灶,内壁光滑,并见
气液平面,胸部
X线片曾疑
肺癌 对胸部疾病的诊断,CT检查随着高
分辨力CT的应用,日益显示出它的优越性。通常采用造影
增强扫描以明确
纵隔和
肺门有无肿块或
淋巴结增大、
支气管有无狭窄或阻塞,对原发和转移性
纵隔肿瘤、
淋巴结结核、
中心型肺癌等的诊断,均很在帮助。肺内间质、
实质性病变也可以得到较好的显示。CT对平片检查较难显示的部分,例如同心、
大血管重叠病变的显圾,更具有优越性。对胸膜、膈、胸壁病变,也可清楚显示。
心及大血管的CT检查,尤其是后者,具有重要意义。心脏方面主要是
心包病变的诊断。
心腔及
心壁的显示。由于
扫描时间一般长于
心动周期,影响图像的
清晰度,诊断价值有限。但
冠状动脉和
心瓣膜的钙化、大
血管壁的钙化及
动脉瘤改变等,CT检查可以很好显示。
腹部及
盆部疾病的CT检查,应用日益广泛,主要用于肝、胆、胰、脾,
腹膜腔及
腹膜后间隙以及泌尿和
生殖系统的
疾病诊断。尤其是
占位性病变、炎症性和外伤性病变等。胃肠病变向腔外侵犯以及邻近和远处转移等,CT检查也有很大价值。当然,胃肠管腔内病变情况主要仍依赖于钡剂造影和
内镜检查及病理活检。
骨关节疾病,多数情况可通过简便、经济的常规
X线检查确诊,因此使用CT检查相对较少。
未来发展
医学影像学发展新形势有着不断的发展。 在新世纪,知识与经济的
全球化和可持续发展将成为
人类社会和经济发展的主流。其中,
生命科学和
信息科学将是跨世纪科学发展的主要学科。
现代医学是
循证医学,
医学影像学包涵了多种影像检查、治疗手段,已成为临床最大的证源。值得一提的是,医学影像学发展的趋势是多种影像检查手段的融合和优化选择。此外,医学影像学专业内部也需要
信息交流和相互融合。
医学影像学的发展表现为几个方面,
图像数字化是影像发展的基本需要;设备网络化可以提高设备的使用及保障效率;诊断综合化能优化多种影像检查,提高诊断的
准确率;分组系统化能更紧密的与临床结合,充分发挥综合影像的优势;而存档无片化则是实现
数字化管理。
影像全数字化建设的必要性
影像科室的数字化是医院数字化建设的一个重要部分,它的主要优点表现为:能够简化和精确科室管理,提供全新的
数字影像阅片方式;减少烦琐的
档案管理;完整保留
图像数据,对科研、教学和解决未来可能的法律纠纷是最好的保障;减少胶片用量,节省相机、
洗片机药水。
影像科室的数字化还是临床科室的需求。影像信息为临床所用,在临床诊治过程中,特别能使急诊科、手术室这些急需看到影像的部门迅速得到影像资料,提高急诊、急救水平,明显地加快医疗程序,并更好地为患者服务。
此外,影像科室的数字化也是学科发展的需求,影像资料的数字化是影像
资源共享与
远程会诊的前提,通过数字化、信息化、网络化,医院可实现管理工作的现代化。此外,数字化也为医护人员提供了大量可随意调用的
影像数据和资料,从而产生更大的
社会效益和
经济效益。
数字化大影像学
医院数字化建设是
电子工业、
计算机技术和医学结合的产物,它是影像学发展的必然,也是整个科学发展的必然。科学发展到,
电子信息、计算机技术都得到了充分发展,它们结合的产物是数字化影像发展的起源和基础。数字化影像学的主要优点表现为:能将模拟死图像变成可再用或数据,进一步将二维的平面图像变成多维的
立体图像;可以使影像定量诊断成为可能;彻底改变了传统的
医学影像视观、使用、存储和
管理方式。
数字化影像是把过去的
模拟图像变成了可再用的数据。过去,医院给病人的是一张X光片,它只能记录病人在当前条件下的影像,不能通过它看到新的东西。而数字化把影像变成一种活的数据,能把过去二维的平面图像变成多维的立体图像,从过去的只有一个平面和长宽变成了一个长、宽、高或者前后、左右、上下的立体图像。
由于引入的功能不同,医学影像学本身不仅反映三维立体结构,同时还包括诸如时间、分辨率等元素。在功能变化中,我们称其为四维图像。过去我们只能进行定性判定,没有确切的数据对患者的片子做定量判定。借助数字化影像,我们可以对这些做出准确测量。例如通过对患者影像CT值的测量,可以明确得出其病变的
组织类型,从而做出诊断。
在数字化平台的基础上,借助数字化影像,我们可以清楚显示出整个血管走行,甚至可以看到器官末梢的微细血管分支,这有利于我们探讨血管的病变。
大影像及全数字化的标准
影像全数字化的标准应该表现为:
放射科的全部检查设备(XR、CT、
MRI、
DSA 等)都必须实现数字化;所有以显示
人体器官和组织大体
形态学信息作为诊断目的的影像检查手段(BU、NM)都必须实现数字化;医院所有与影像诊断、治疗相关的信息(申请、报告等)都必须实现数字化。
大影像的标准主要表现为组成诊断和治疗兼备的现代医学影像学科,包括放射(含XR、CT、MRI、DSA)、超声、
核医学等多种诊断性成像技术和
介入治疗技术。同时在放射科内实现以系统分组而不是设备划分。所谓系统分组,主要是指现代医学影像学在分组时按照临床学科的设置,从系统上划分,这样能同时综合放射、超声、核医学等所有资料,这对病人的诊断来说也可以提供更多依据。这就是大影像,这样才能使整个数字影像资料能够互相利用起来。
全数字化大影像的意义
医院实现全数字化为医学影像学的发展如图像调控、观片模式、诊断质量、传输归档、信息交流、管理奠定了基础。
它为临床参考调阅影像提供了最佳便捷模式,同时
远程会诊解决了边远地区百姓就医的问题,促进了医学影像教学和科研工作的开展。此外,全数字化提升了医学影像学的平台,与生物技术、
基因工程和医学
生物工程的结合将加速预防和诊治技术的更新(
PET-CT、MRI-CT)。
大影像学有利于医院各种影像技术之间的选择优化、信息互补,能够实现诊断与治疗之间的密切结合,极大地促进了医学影像的人才培养和学科发展,同时还有利于国家级、多层次、高水平综合影像科研项目的申报。
而全数字化大影像学则可以起到1+1≥2的效果,它是对
医学影像视观、使用、存储和管理方式的彻底改革。
数字化影像能够彻底改变传统医学影像视观。传统的视观一般是
荧光屏透视或看胶片,而我们有很多种方法,借助数字影像,我们在影像资料的使用上有了新的处理,其中包括存储的管理方式。
数字化影像能带给我们无穷的好处,数字化建设首先能够满足科室的需要,简化科室的管理,可以减少医生的
劳动强度,并保留病人原始就诊数据,从而使医生在做诊断时更精细,对医生的科研、教学都有很大的帮助,同时也可以解决未来
可能发生的法律纠纷。
医学影像学的发展,使医生对图像的调阅、图像质量的控制等有了更大的
主动性。而且,它也使得医生工作的关键模式发生了改变。过去医生看病人的CT片,都是一张一张来看的,而当下扫一个病人的图像,就有1000幅图像,一天下来会产生万幅图像,医生根本没法彻底看完这些片子。借助医学影像学,可以先对这些片子进行
后处理,使之融合成为一个三维立体,这样医生就可以先看立体图像。数字影像对诊断质量、图文控制、传输归档、信息的交流以及科室管理等都奠定了基础。它为临床参考影像提供了一个最佳便捷的模式,解决了很多疑难问题和边缘问题。
必须指出的是,
信息技术的发展的确给我们提供了极大方便,也促进了医学影像和教学科研工作的开展,它和生物技术、基因工程以及
医学工程的结合,会加速新技术的更新。
数字化大影像学面临的挑战
由于历史原因,当前我国绝大多数医院的放射、超声和核医学都是独立科室,甚至放射科内的XR、CT、MRI都各自为战。很多医院受
旧观念束缚,在实施方面存在误区,理想一步到位,只看到
医疗设备的更新,忽视了医院设备全数字化的重要性。因此,各级医院应该提高对数字化大影像学的认识,更新观念,积极推进其在医院的应用。